Distributed Systems

Summer Term 2020

Roland Wismuiller
Universitat Siegen
roland.wismueller @ uni-siegen.de
Tel.: 0271/740-4050, Buro: H-B 8404

Stand: July 14, 2020

=="" Roland Wismdiiller

=.T= Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

Contents

0 Organisation 2

1 Introduction 15
1.1 What makes a distributed system? 17
1.2 Characteristics of distributed systems 22
1.3 Challenges and Goals of Distributed Systems 24
1.4 Software Architecture 27
1.5 ArchitecturalModels 30
1.6 Cluster 44
1.7 Summary 48

1-1

2 Middleware 49

2.1 Communication in Distributed Systems 53
2.2 Communication-oriented Middleware 59
2.2.1 Tasks of the Middleware 60
2.2.2 Programming Models 64
2.2.3 Middleware Technologies 72
2.2.4 Message Oriented Middleware (MOM) 73
225 Summary . .o L e e e 77

2.3 Application-oriented Middleware 78
2.3.1 Runtime environment 79
2.3.2 ServiCes 88
2.3.3 Componentmodel, 93

1-2

2.3.4 Middleware Technologies 94
2.3.5 Summary 95

3 Distributed Programming with Java RMI 96
3.1 Introduction. 99
3.1.1 RMI Architecture 102
3.1.2 RMI Services 106

3.2 Hello World withJavaRMI 109
3.3 RMlinDetail 123
3.3.1 Classesand Interfaces 123
3.3.2 Special Features of Remote Classes 128
3.3.3 ParameterPassing 130

1-3

3.3.4 Remote Object References as Results 139

3.35 ClientCallbacks 140

3.3.6 RMland Threads 141

3.4 Deployment L. 142
3.4.1 Remote Class LoadinginJavaRMI 144

3.4.2 Java Security Manager 153

35 Summary 159

4 Name Services 160
4.1 BasiCS e 162
4.2 Example: JNDIo 167

5 Process Management 173

1-4

5.1 Distributed Process Scheduling 175
5.1.1 Static Scheduling 177

5.1.2 Dynamic Load Balancing 182

5.2 Code Migration 0. 184

6 Time and Global State 192
6.1 Synchronizing Physical Clocks 199
6.2 Lamport's Happened-Before Relation 203
6.3 LogicalClocks 205
6.4 GlobalState 211

7 Coordination 219
7.1 Election Algorithms 221

7.2 Mutual Exclusiono
7.3 Group Communication (Multicast)

7.4 Transactionso

8 Replication and Consistency
8.1 Introduction and Motivation
8.2 Data Centric Consistency Models
8.3 Client Centric Consistency Models
8.4 Distribution Protocols
8.5 Consistency Protocols
8.6 Summary

9 Distributed File Systems

1-6

9.1 General
9.2 CaseStudy: NFS,

10 Distributed Shared Memory

11 Fault Tolerance
11.1 Introductiono
11.2 Process Elasticity
11.3 Reliable Communication

11.4 Recovery o i e e e e e e

12 Summary, Important Topics

1-7

253
255
258
266
269
276
284

285

287
291

298

307
309
313
315
316

318

Distributed Systems

Summer Term 2020

O Organisation

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 2

About Myself n

Studies in Computer Science, Techn. Univ. Munich
& Ph.D. in 1994, state doctorate in 2001

Qo

Since 2004 Prof. for Operating Systems and Distributed Systems

Qo

Qo

Research: Monitoring, Analysis und Control of parallel and
distributed Systems

Mentor for Bachelor Studies in Computer Science with secondary
eld Mathematics

Qo

E-mail: roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050

Room: H-B 8404

Of ce Hour: Mo., 14:15-15:15 Uhr

Qo Qo Qo

o

= Roland Wismuller _
EL=.I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 3

About the Chair " Operating Systems / Distrib. Sys.

d

Andreas Hoffmann a E-assessment and e-labs
andreas.hoffmann@uni-... & IT security
0271/740-4047 a Web technologies
H-B 8405 a Mobile applications
Damian Ludwig a Capability systems
damian.ludwig@uni-... a Compilers
0271/740-2533 a Programming languages
H-B 8402
E£23 Roland Wismdller Distributed Systems (1/11) 4

=w= Betriebssysteme / verteilte Systeme

Teaching

Lectures/Labs

Rechnernetze |, 5 LP (every summer term)

Qo

Rechnernetze Praktikum, 5 LP (every winter term)

Qo

Rechnernetze Il, 5 LP (every summer term)

Qo

Betriebssysteme I, 5 LP (every winter term)

Qo

Qo

Parallel Processing, 5 LP (every winter term)

Distributed Systems, 5 LP (every summer term)

Qo

=== Roland Wismduller -
—== Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

Teaching ... "

Project Groups

o

a e.g., recording and analyzing car sensor data

a e.g., outlier detection in car sensor data

Theses (Bachelor, Master)

a Topic areas: secure virtual machine, parallel computing, pattern
recognition in sensor data, e-assessment, ...

Seminars

a Topic areas: IT security, programming languages, pattern
recognition in sensor data, ...

a Procedure: block seminar
& 30 min. talk, 5000 word seminar paper

=== Roland Wismuller ety
LIF Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

About the Lecture n

Lecture

a Monday 12:20 - 13:50, H-F 001

Exercises

a Tuesday, 10:15-11:45, H-F 104/105, Start: 05.05.

Qo

Possibility for practical exercises in the laboratory H-A 4111
You will receive the login credentials in the rst exercise

& you have to accept the user regulations!

Please Il in card key application form in advance

a let Mrs. Syska sign it (H-B 8403, Mon. - Fri., 09:00 - 12:00),
and then deliver it to Mr. Kiel (AR-P 209)

user regulations and card key application form: see website

Qo

Qo

a

= Roland Wismuller _
EL=.I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 7

About the Lecture ... "

Information, Slides and Announcements
a http://www.bs.informatik.uni-siegen.de/lehre/vs

a If necessary, updates/supplements shortly before the lecture
& look at the date!

For printing: use print service of the Student Council!

Qo

Qo

Exercise sheets will be put online as PDF
& please print and process them yourself!

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 8

Computer Environment in the Lab Room H-A 4111 "

a Linux-PCs, private IP network, but sftp access to le server

Internet / group network (bs.informatik.uni-siegen.de)

T Ettp sftp (only pubkey authentiflci 0
ftgps bsgatel.bs.informatik.uni-sieg@.c
= File (=
E Proxy Server%

Lab network (lab.bvs) 1 Gbit/s

Py

bslab01-06,12-18 bslab07-11,19
13 work stations 6 work stations
(Intel, 4 cores with HT, (Intel, 4 cores,

3,4 GHz, 8 GB) 3,2 GHz, 4 GB)

=== Roland Wismduller -
—== Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 9

http://www.bs.informatik.uni-siegen.de/lehre/vs

Examination

a Oral examination
a4 duration about 30 minutes

Qo

Registration:

& rstregister at the campus management system (unisono)
a at least 1 week before the exam date

a4 then x a date with my secretary

& at least 1 week before the exam date
a Mrs. Syska, Room H-B 8403, 08:30 - 12:00

a cancellation is possible up to 7 days before the exam

a via unisono
please inform me, too!

Q_)o

=== Roland Wismuller ety
LIF Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

Contents of the Lecture

10

Introduction

Qo

Middleware

Qo Qo

Distributed programming with Java RMI
Name services

Qo Qo

Process management

Qo

Time and global state
Coordination

Qo Qo

Replication and consistency

Qo

Distributed le systems
Fault tolerance

Qo

=== Roland Wismduller et
EL=.I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

11

Learning targets "

a Understand the properties of distributed systems
& absence of a global state

o

a problems with synchronization and with consistency of
replicated data

Understand the approaches to solve the problems
and be able to apply them to given challenges

Qo

Distinguish architecture models for distributed systems as well as
different types and tasks of middleware
and be able to assess their usability for given problems

Qo

Be able to develop simple distributed programs with Java RMI

Qo

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 12

Literature n

a Andrew S. Tanenbaum, Marten van Steen. Verteilte Systeme,
Grundlagen und Paradigmen. Pearson Studium, 2003.
(English: Distributed Systems: Principles and Paradigms, 2nd
Edition. Pearson Education, 2016. Available online.)

Ulrike Hammerschall. Verteilte Systeme und Anwendungen. Pear-
son Studium, 2005.

George Coulouris, Jean Dollimore, Tim Kindberg. Verteilte Sys-
teme, Konzepte und Design, 3. Au age . Pearson Studium, 2002.
(English: Distributed Systems: Concepts and Design, 5th Edition.
Pearson Education, 2012.)

Qo

Qo

Qo

Andrew S. Tanenbaum. Moderne Betriebssysteme, 2. Au age .
Pearson Studium, 2003.

William Stallings. Betriebssysteme — Prinzipien und Umsetzung,
4. Au age . Pearson Studium, 2003.

Qo

=== Roland Wismduller et
EL=.I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 13

http://barbie.uta.edu/~jli/Resources/MapReduce%26Hadoop/Distributed%20Systems%20Principles%20and%20Paradigms.pdf

Literature ... "

a Jim Farley, William Crawford, David Flanagan. Java Enterprise in
a Nutshell. O'Reilly 2002.

Qo

Cay S. Horstmann, Gary Cornell. Core Java 2, Band 2 —
Expertenwissen. Sun Microsystems Press / Addison Wesley,
2008.

Qo

Robert Orfali, Dan Harkey. Client/Server-Programming with Java
and Corba. John Wiley & Sons, 1998.

Qo

Torsten Langner. Verteilte Anwendungen mit Java. Markt +
Technik, 2002.

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 14

Distributed Systems

Summer Term 2020

1 Introduction

=== Roland Wismduller et
EL=.I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 15

1 Introduction ... "

Contents
a What makes a distributed system?
a Software architecture

a Architecture models

a Cluster

Literature

a Hammerschall: 1

a Tanenbaum, van Steen: 1

a Colouris, Dollimore, Kindberg: 1, 2
a Stallings: 13.4

=="" Roland Wismdiiller P
—*.1= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 16

1 Introduction ... n

1.1 What makes a distributed system?

In a distributed system, components located on different computers
work together to coordinate their actions by exchanging messages.

G. Coulouris

A distributed system is a set of independent computers that appear to
the user as a single, coherent system.
A. Tanenbaum

A distributed system is a collection of processors that neither share
main memory nor a clock. A. Silberschatz

A distributed system is one on which | can't do any work because some
machine I've never heard of has crashed. L. Lamport

=TT Roland Wismdiller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 17

1.1 What makes a distributed system? ... "

a A distributed system is a system

o

a in which hardware and software components are based on
networked computers , and

Qo

communicate and coordinate their actions only via the
exchange of messages .

Qo

The boundaries of the distributed system are de ned by a com-
mon application

Qo

Best known example: Internet
& communication via the standardized Internet protocols
a |IP and TCP/UDP (+ lecture Computer Networks)

& users can use services / applications, regardless of the present
location

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 18

1.1 What makes a distributed system? ... n

What is a distributed application?

a Application that uses a distributed system to create a
self-contained functionality

Qo

Application logic distributed among several, largely independent
components

Qo

Components often executed on different machines

Qo

Examples:
a simple internet applications (e.g. WWW, FTP, email)
& distributed information systems (e.g. ight booking)
a SW intensive, data centered, interactive, highly concurrent
& distributed embedded systems (e.qg. in the car)

a distributed mobile applications (e.g. for handhelds)

=== Roland Wismduller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 19

1.1 What makes a distributed system? ... "

A typical distributed system

Mail Desktop
server |M| [

Desktop

WWW : B
server cation rint Data
server server base
server
.... 3 Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 20
1.1 What makes a distributed system? ... n

Why distribution?

a Central, non-distributed applications are
& generally safer and more reliable
a generally more performant

a Main reason for distribution: sharing of resources
& Hardware resources (printer, scanner, ...)
a cost saving
& Data and information (le server, database, ...)
a information exchange, data consistency
& Functionality (centralization)
a error avoidance, reuse

=TT Roland Wismdiller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 21

1.2 Characteristics of distributed systems "

a Resources (e.g. computers, data, users, ...) are distributed
& sometimes worldwide

Qo

Cooperation via message exchange

Qo

Concurrency

o

a but: parallel processing of a single request is not the primary
goal

Qo

No global clock (more precisely: no global time)

Distributed status information
& no uniquely determined global state

Qo

Qo

Partial errors are possible (independent failures)

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 22

1.2 Characteristics of distributed systems ... n

Parallel vs. distributed systems

a Parallel system:

motivation: higher performance through parallel execution
multiple tasks (processes/threads) working on one job
tasks are ne-grained: frequent communication

tasks work simultaneously (parallel)

homogeneous hardware / OSs, regular network structure

Qo o o Qo o

Qo

Distributed system:
& motivation: distributed resources (computers, data, users)

o

a multiple tasks (processes/threads) working on one or many
jobs

tasks are coarse grained: communication less frequent
tasks work synchronized (usually one after the other)
iInhomogeneous (processors, networks, OSs, ...)

Qo Qo Qo

=== Roland Wismduller et
EL=.I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 23

1.3 Challenges and Goals of Distributed Systems "

a Heterogeneity : computer hardware, networks, OSs,
programming languages, implementations by different
developers, ...

& solution: middleware

a software layer that hides heterogeneity by providing a
uni ed programming model

a e.g. CORBA: distributed objects, remote method invocation
a e.g. web services: remote procedure calls (services)

Qo

Openness : easy extensibility (with new services)

& requirements:
a key interfaces are published / standardized
a uniform communication mechanisms / protocols
a components must conform to standards

[Coulouris, 1.4]

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 24

1.3 Challenges and Goals of Distributed Systems ... n

a Security
a information: con dentiality, integrity, availability
a esp. with mobile code
& users: authentication, authorization

Qo

Scalability : number of resources or users can grow without
negative impact on performance and cost

Qo

Error handling (partial errors)
error detection (e.g. checksums)

Qo

Qo

error masking (e.g. retransmission of a message)
error tolerance (e.g. browser: “server not available”)
recovery (of data) after errors

Qo Qo

Qo

redundancy (of hardware and software)

=== Roland Wismduller et
EL=.I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 25

Notes for slide 25:
There are the following problems with the realization of scalability:

a Cost control: the system hardware should be extensible; the effort should be (at
most) proportional to the number of users.

Qo

Performance loss control: the algorithms used should scale well with the number
n of nodes, i.e. with O (n log n) or better.

Qo

Prevent exhaustion of software resources: as an example, think of the 32-bit IPv4
addresses.

a Avoid performance bottlenecks: decentralized algorithms without bottlenecks.

Ideally, a system should be able to scale without adapting the application and system
software.

Techniques that support scalability include replication and caching.

25-1

1.3 Challenges and Goals of Distributed Systems ... n

a Concurrency
& synchronization, consistency of replicated data

Qo

Transparency

Qo

access : local and remote accesses identical

. . network
location : no need to know the location etwo

Qo

Qo

mobility : transparent relocation of resources

Qo

replication : transparent replication of resources

Qo

concurrency : shared use of resources without disruptions

Qo

error : hiding errors due to component failure

Qo

performance : performance is largely independent of the
load

scaling : system scales without negative impact on users

=== Roland Wismduller et
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 26

Notes for slide 26:

The concurrency transparency corresponds to the concept of isolation in the context of
database systems.

26-1

1.4 Software Architecture n

Types of Operating Systems for Distributed Systems

a Network operating system:

a traditional OS, extended by support for network applications
(API for sockets, RPC, ...)

each computer has its own OS, but can use services of other
computers (le system, email, ssh, ...)

the existence of the other computers is visible

Qo

Qo

Qo

Distributed operating system:
& uniform OS for a network of computers

Qo

transparent for the user

Qo

requires cooperation of the OS kernels
a so far mainly research projects

=== Roland Wismduller et
EL=.I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 27

1.4 Software Architecture ... "

Typical layers in a distributed system

Applications
Services (generic or application specific)

Middleware

(Network) Operating system

V
Platform(s)

Computer and network hardware

)

[Coulouris, 2.2.1]

=="" Roland Wismdiiller P
—*.1= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 28

1.4 Software Architecture ... n

Middleware

a Tasks:
hiding of distribution and heterogeneity
& providing a common programming model / API

Qo

& provision of general services

Qo

Functions e.g:

o]

a communication services: remote method calls, group
communication, event noti cations

Qo

replication of shared data

Qo

security services

Examples: CORBA, EJB, .NET, Axis2 (Web Services), ...
(+ Lecture Client/Server Programming)

Qo

=TT Roland Wismdiller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 29

1.5 Architectural Models "

a An architecture model characterizes:

a roles of an application component within the distributed
application

& relationships between application components

a Role de ned by the type of process the component is running in :
& client process

short-lived (for the duration of use by the user)

a acts as initiator of interprocess communication (IPC)

server process

a lives 'unlimited’

a acts as a service provider for an IPC

peer process

a short-lived (for the duration of use by the user)

4 acts as initiator and service provider

=TT Roland Wismdiller etri
_L Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 30

QJo

Qo

Qo

1.5 Architectural Models ... n

Peer-to-Peer Model

a Collaboration of peer processes for a distributed activity
& each process manages a local part of the resources

a distributed coordination and synchronization of actions at
application level

Application
Coordination code

Application
Coordination code

Application
Coordination code

a E.g.: le sharing applications, routers, video conference s, ...

=TT Roland Wismdiller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 31

1.5 Architectural Models ... "

Client/Server Model [Coulouris, 2.2.2]

a Asymmetric model: Servers provide services that can be used by
(multiple) clients.

a servers usually manage resources (centralized)

_ Process Computer
Server can itself

act as a client

a Most common model for distributed applications (ca. 80 %)

=TT Roland Wismdiller etri
_L Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 32

1.5 Architectural Models ... n

(Animated slide)

Client/Server Model ...

a Usually concurrent requests from several client processes to the
server process

Start* Client * End

Request Reply Time

Server T l T l

Client

a Examples: le server, web server, database server, DNS serv er,

=== Roland Wismduller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 33

1.5 Architectural Models ... "

Variants of the client/server model

a Cooperating servers
& Network of servers transparently processes a request

a Example: Domain Name Server (DNS)
a if server cannot determine address:

request is transparently /
forwarded to another server -
Replicated servers

& replicas of server processes ,

are provided
a transparent replicas (often in clusters)
4 requests are automatically distributed to the servers
a public replicas (e.g. mirror servers)
a4 goals: better performance, reliability

=TT Roland Wismdiller etri
_L Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 34

Qo

1.5 Architectural Models ... n

Variants of the client/server model ...

a Proxy-Server / Caches

& proxy is a delegate for @
the server

& task often is caching @/
of data / results
a e.g. web proxy
Mobile code
& executable server code migrates to client on request

o

a code is executed by the client

o

a best-known example: JavaScript / Java applets in the WWW

Qo

Qo

Mobile agents

& agent contains code and data, moves through the network and
performs actions on local resources

Roland Wismdiller L
‘.....i' Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 35

1.5 Architectural Models ... "

n-Tier Architectures
a Re nements of Client/Server Architecture

a Models for distributing an application to the nodes of a distributed

system
a Mainly used in information systems
a Tier (german: Schicht/Stufe) denotes an independent process

space within a distributed application

& process space can, but does not have to, correspond to a
physical host

& several process spaces on one computer are possible

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 36

1.5 Architectural Models ... n

The Tier Model

a Typical tasks in an information system:

o

a presentation — interface to the user
a application logic — actual functionality
& data storage — storage of data in a database

a The tier model determines:
& assignment of tasks to application components

o

a distribution of application components on tiers

a Architectures:

o

a 2-tier architectures

o

a 3-tier architectures

o

a 4-or-more-tier architectures

=TT Roland Wismdiller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 37

1.5 Architectural Models ... "

2-Tier Architecture
a Client and server tier

a No own tier for the application logic

: : Presentation
Client tier
Application logic
---------------- (distribution between client
and server tier varies)
Server tier

Data storage

Qo

Advantage: simple, high performance

Disadvantage: dif cult to maintain, poorly scalable

Qo

=="" Roland Wismdiiller P
—*.1= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 38

1.5 Architectural Models ... n

3-Tier Architecture

Client tier Presentation
Middle tier Application logic
Server tier Data storage

a Standard distribution model for simple web applications:
& client tier: web browser for display
middle tier: web server with servlets / JSP / ASP

Qo

a server tier: database server

a Advantages: Application logic centrally administrable, scalable

=TT Roland Wismdiller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 39

1.5 Architectural Models ... "

4-or-more-Tier Architectures

a Difference to 3-tier architecture:
& application logic distributed across multiple tiers

a Motivation:
& minimization of complexity (divide and conquer)
a better protection of individual application parts
& reusability of components

Qo

Many distributed information systems have 4-or-more-tier
architectures

=== Roland Wismuller ety
T=_I= Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

1.5 Architectural Models ... n

(Animated slide)

Example: Typical Internet Application

DMz Intranet

|
|
=1
T T,
=, =3
o = -
L1 [= ——
client “
| |
pr . Web | Web Appli- Data
| | 1
Web | server | server cation base
client : : server server
| |
Tier 1 : : Tier 2 Tier 3 Tier 4

==7= Roland Wismdlller L
=_2= Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

1.5 Architectural Models ... "

Thin and fat clients

a Characterizes complexity of the application component on the
client tier

a Ultra-thin client
& client tier only for presentation: pure display of dialogs

o

a presentation component: web browser

o

a only possible with 3-or-more-tier architectures
Thin client

Qo

a client tier for presentation only: display of dialogs, preparation
of data for display

Fat client

o

a parts of the application logic on the client tier

& usually with 2-tier architectures

=== Roland Wismuller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 42

Qo

1.5 Architectural Models ... n

Distinction from Enterprise Application Integration (EAI)

a EAIl: integration of different applications
& communication, exchange of data

a Goals similar to distributed applications / middleware
a middleware is often used for EAIl as well

a Differences:

& distributed applications: application components, high degree
of coupling, usually little heterogeneity

& EAIl: complete applications, low degree of coupling, mostly
great heterogeneity (different technologies, systems,
programming languages, ...)

=== Roland Wismduller -
_1 Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 43

1.6 Cluster

Qo

Cluster: group of networked
computers that acts as a uni ed
computing resource

o

a I.e. multicomputer system

& nodes usually standard PCs
or blade server

Qo

Application mainly as high
performance server

Motivation:

(step-by-step) scalability
high availability

good price/performance ratio

Qo
Qo Qo Qo

[Stallings, 13.4]

=TT Roland Wismdiller ety
ZT= Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 44

1.6 Cluster ... "

Uses for Clusters

a High availability (HA) clusters

o

a improved reliability

& when a node is faulty: services are migrated to other nodes
(failover)

Qo

Load balancing cluster

& incoming requests are distributed to different nodes of the
cluster

a usually by a (redundant) central instance
a frequently with WWW or email servers

Qo

High performance computing cluster
a cluster as parallel computer

=== Roland Wismduller -
—== Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 45

1.6 Cluster ... "

Cluster con gurations

a Passive standby (no actual cluster)

o

a processing of all requests by primary server
a4 secondary server takes over tasks (only) in case of failure

Qo

Active standby
a all servers process requests

Qo

enables load balancing and improved reliability

Qo

problem: access to data of other / failed server

alternatives:
a replication of data (a lot of communication)

o

a shared hard disk system (usually mirrored disks or RAID
system for fail-safe operation)

Qo

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 46

1.6 Cluster ... n

Active Standby Con gurations

a Separate servers with data replication

& separate disks, data is continuously copied to secondary
servers

Server with shared hard disks

Qo

& shared nothing cluster

separate partitions for each server
in case of server failure: recon guration of the partitions

Q)o

Q)o

& shared disc cluster
simultaneous use by all servers
requires lock manager software to lock les or records

QJo

QJo

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) a7

1.7 Summary

a Distributed system

& HW and SW components on networked computers
no shared memory, no global time
& motivation: use of distributed resources

Qo

Qo

Challenges

& heterogeneity, openness, security, scalability
& error handling, concurrency, transparency

Software architecture: middleware

Qo

Architectural models:

Qo

a peer-to-peer, client/server
& n-tier models

Qo

Cluster: high availability, load balancing

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

48

Distributed Systems

Summer Term 2020

2 Middleware

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

49

2 Middleware ... "

Content

a Communication in distributed systems
a Communication-oriented middleware

a Application-oriented middleware

Literature

a Hammerschall: Ch. 2, 6
a Tanenbaum, van Steen: Ch. 2
a Colouris, Dollimore, Kindberg: Ch. 4.4

Roland Wismiuller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 50

2 Middleware ... n
(Animated siide)
Distributed application (DA) Distributed application (DA)
DA DA DA DA
component component component component
DS node R DS node M[I)dgdlr?c\,/:;ire B M[;dsdfgge
Distributed system (DS) Distributed system (DS)
a DA uses DS for communication between its components
a DSs generally only offer simple communication services
a direct use: network programming
a Middleware offers more intelligent interfaces

& hides details of network programming

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) o1

2 Middleware ... "

a

Q_)o

gJo

Qo

Middleware is the interface between distributed application and
distributed system

Goal: hide distribution aspects from application

a transparency (+ 1.3)

Middleware can also provide additional services for applications
a huge differences in existing middleware

Distinction:

& communication-oriented middleware (+ 2.2)
a (only) abstraction from network programming

a application-oriented middleware (+ 2.3)

a besides communication, the focus is on support of
distributed applications

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 52

2 Middleware ... "

2.1 Communication in Distributed Systems

a

Qo

Qo

Basis: interprocess communication (IPC)

& exchange of messages between processes (+ BS_I: 3.2)
a on the same or on different nodes

a e.g. via ports, mailboxes, streams, ...
For distribution: network protocols (+ RN._I)

& relevant topics etc: addressing, reliability, guaranteed ordering,
timeouts, acknowledgements, marshalling

Interface for network programming: sockets (+ RNL_II)
& datagrams (UDP) and streams (TCP)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 53

2.1 Communication in Distributed Systems ... "

Synchronous Communication

a Sender and receiver block when Sender Receiver
calling a send or receive operation .
.]] o request I
a receiver is waiting for a request -
()
& sender is waiting for the reply % %
s) @

a Tight coupling between sender and 2 .
receivers \'I]me
a4 advantage: easy to understand model
a4 disadvantage: strong dependency, especially in case of error

a Prerequisites:

a reliable and fast network connection

& receiver process is available

Egtlﬁggsvsvﬁ?g#qlg " verteilte Systeme Distributed Systems (1/11) o4
2.1 Communication in Distributed Systems ... n

Asynchronous Communication

a

a

Qo

Qo

Qo

Sender is not blocked, can continue Sender Receiver
iImmediately after sending the message
_ request
Incoming messages are buffered at the o o
receiver > =
_ 5 5

Answers are optional © ©
a receiver can reply asynchronously to Time

the sender \I]

More complex implementation and use as with synchronous
communication, but usually more ef cient

Only loose coupling between the processes

& receiver does not have to be ready for reception
a less dependent in case of errors

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 55

2.1 Communication in Distributed Systems ... "

(Animated slide)

Client/Server Communication

Client Server
— getRequest()
~ | e
A:c?pi(gr%l#gn AN request " determine !
e message _ request
= ' I . .
S | (7't) ! select object, if needed
o, (wait)
Sr . : execute method
o ! - ICo - T
S ! reply ' send answer
(continue) message \ “““““

sendReply()
\/

o

a Mostly synchronous: client blocked until response arrives

a Variants: asynchronous (non blocking), one way (without answer)

Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 56
2.1 Communication in Distributed Systems ... n

Client/Server Communication: Request/Response Protocol

a Typical operations:

& doOperation() - send request and wait for result

& getRequest() — wait for request

a sendReply() — send result

a Typical message structure:

messageType request / reply ?
requestiD unique ID of request (usually int)
objectReference | reference to remote object (if needed)
methodID method to be called (int / String)
arguments arguments (usually as Byte array)

& request ID + sender ID result in unique message 1D
a e.g. to map an answer to its query

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) o7

2.1 Communication in Distributed Systems ... "

Client/Server Communication: Error Handling

a

Qo

Qo

Qo

Request and/or response messages may be lost
Client sets a timeout when sending a request

a after expiration, request is usually sent again

a after a few repetitions: termination with exception

Server discards duplicate requests if request has already been /
is still being processed

For lost response messages:
& idempotent operations can be executed again
& otherwise: save results of operations in a history

for repeated request: only resend the result

delete history entries when next request arrives; if
necessary con rmations for results can also be used

QJo

Q_)o

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) o8

Notes for slide 58:

In principle, three different semantics are distinguished:

a

Qo

Qo

At most once: The query is executed at most once under all circumstances. This
means that lost requests or answers do not lead to a repetition of the request.

At least once: The request is executed at least once under all circumstances.
l.e., lost requests or answers lead to a repetition of the request, whereby the
server does not have to recognize duplicates of a request. This semantics is use-
ful e.g. for idempotent requests.

Exactly once: The request is executed exactly once under all circumstances. In
case of lost requests or answers, the request must be repeated. At the same time,
the server must be able to recognize repeated requests as duplicates and must
not execute them again.

58-1

2.2 Communication-oriented Middleware "

a Focus: provision of a communication infrastructure for distributed

applications
a Tasks:

4 communication

a4 dealing with heterogeneity

a error handling

Application
Communication oriented
middleware
Operating system / distributed system

Egtlﬁggsvsvyig?é%lg " verteilte Systeme Distributed Systems (1/11) 59

2.2.1 Tasks of the Middleware n

Communication
a Provision of a middleware protocol

a Localization and identi cation of communication partners

a Integration with process and thread management

Application protocol

Middleware protocol

Transport protocol (e.g. TCP)

Lower layers of the protocol stack

Roland Wismdller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 60

2.2.1 Tasks of the Middleware ... "

Heterogeneity

a Problem with data transmission:
& heterogeneity in distributed systems

Qo

Heterogeneous hardware and operating systems
a different byte order
a little endian vs. big endian
a different character encoding
a e.g.. ASCIl/ Unicode / UTF-8 / EBCDIC (IBM Mainframes)

Qo

Heterogeneous programming languages

& different representation of simple and complex data types in
the main memory

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 61

2.2.1 Tasks of the Middleware ... n

Heterogeneity: Solutions (+ RN_I)

a Use of generic, standardized data formats
& known to all communication partners and middleware

o

a platform-speci ¢ formats for middleware (e.g. CDR for
CORBA) or external formats, e.g. XML

Heterogeneity of hardware and operating system
& is handled transparently for the applications by the middleware

Qo

Qo

Heterogeneity of programming languages

a applications need to convert data to higher-level format and
back (marshaling /unmarshaling)

a necessary code is usually generated automatically
a client stub / server skeleton

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 62

2.2.1 Tasks of the Middleware ... "

Error Handling

a Possible errors due to distribution
& incorrect transmission (incl. loss of messages)
a handled by the protocols of the distributed system:

a checksums, CRC
& retransmission of packets (e.g. TCP)

a failure of components (network, hardware, software)
a handled by middleware or application:
4 acceptance of the error
4 retransmission of messages
& replication of components (error avoidance)
& controlled termination of the application

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 63

2.2 Communication-oriented Middleware ... n

2.2.2 Programming Models

a Programming model de nes two concepts:

& communication model
a synchronous vs. asynchronous

& programming paradigm

o

a object-oriented vs. procedural

Qo

Three common programming models for middleware:
& message-oriented model (asynchronous / arbitrary)

a remote procedure call (synchronous / procedural)
& remote method invocation (synchronous / object-oriented)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 64

2.2.2 Programming Models ...

Message-Oriented Model

a Sender puts message in receiver's queue

Qo Qo

Qo

Sender

Receiver accepts message as soon as he is ready

Message

> || =

Message queue

Message

> || =

Extensive decoupling of transmitter and receiver

No method or procedure calls
& data is packed and sent by the application
a no automatic reply message

Receiver

Roland Wismdiller

Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

2.2.2 Programming Models ...

65

d

Remote Procedure Call (RPC)

a Allows a client to call a procedure in a remote server process

(

Client
process

.

y = P(x);

N
| In

put parameters

(

\

Results

P

]

J

}

g

return b;

\

Server
process

J

a Communication according to request/response principle

Remote Method Invocation (RMI)

a Allows an object to call methods of a remote object

a

In principle very similar to RPC

Roland Wismdiller

Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

66

2.2.2 Programming Models ... "

Common Basic Concepts of Remote Calls

a Client and server are decoupled by interface de nition
& de nes names of calls, parameters and return values
a Introduction of client stubs and server skeletons as an access
interface
a4 are automatically generated from interface de nition
a IDL compiler (IDL = interface de nition language)

& are responsible for marshaling / unmarshaling
as well as for the actual communication

& realize access and location transparency

Egtlﬁggsvsvﬁ?é%lg r/ verteilte Systeme Distributed Systems (1/11) 67
2.2.2 Programming Models ... n

How Client Stub and Server Skeleton Work (RPC)

Client process Server process
(.) ()
Client stub Server skeleton
y=P(3= P(a) { while (Frue) {
{\ pack argument a |~ receive(ml);

into message / client=sender(m1);

send(Server, ml)'/ unpack argument x
from message

i] P
receive(Server, rrg\t.) y = |;,(X;)__—————"""D _(a) {

<1-\ B
unpack result b \ pack result y }return b
from message N into message
return b; send(Client, m2);
\§ } J _ J

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 68

2.2.2 Programming Models ... "

Basis of RMI: The Proxy Pattern

a Client works with a deputy object (proxy) of the actual server
object
& proxy and server object implement the same interface
a client only knows / uses this interface

| <<interface>>
“| Interface

P

Client Proxy Object
>
Egtlﬁggsvsvyig?é%lg " verteilte Systeme Distributed Systems (1/11) 69
2.2.2 Programming Models ... n

Flow of a Remote Method Call

Client node Server node
Client Server |~ Object
Client calls Same interface [Status
a method— —— P as real object N — Method
Skeleton calls T Interface
the same— |
Proxy method on Skeleton
the object 4
Client-OS Serlver—BS
N
Network

"\,
Packed request is sent over the network
(object ID, method name, parameters)

Roland Wismdller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 70

2.2.2 Programming Models ...

Creation of a Client/Server Program

[Server w

procedures)

Compiler

[

RPC/RMI
Runtime
librar

,/ /[Server skel.
Interface I IDL

a

description compiler
A \[Client stubs
4

Compiler

[Client |

program J

Applies in principle to all realizations of remote calls

Server

D

Client

2.2 Communication-oriented Middleware ...

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

o) [

2.2.3 Middleware Technologies

a

Qo

Qo

Qo

Realize (at least) one of the programming models
a rely on open standards / standardized interfaces

Remote procedure call
& SUN RPC, DCE RPC, Web Services (+ CSP: 7), ...

Remote method invocation
& Java RMI (+ 3), CORBA (+ CSP: 3), ...

Message-oriented middleware technologies
& MOM: message oriented middleware, messaging systems

a mainly for EAI
& Java Message Service, WebSphereMQ (MQSeries), ...

Roland Wismdller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

72

2.2 Communication-oriented Middleware ... "

2.2.4 Message Oriented Middleware (MOM)

o

a Middleware technology for the message-oriented model

a In addition to message exchange also other services, especially
gueue management

Sender Message queues Receiver
Access Message queue Access
interface manager interface

Middleware protocol (proprietary)

Protocol stack

Roland Wismiuller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 73

2.2.4 Message Oriented Middleware (MOM) ... n

Message Queue Infrastructure

a Access to queues is only possible locally
& local: same computer or same subnet

a Transport of messages across subnet boundaries by queue
administrators (routers)

Sender (TIIITH~ [IOOIH~ | Receiver
o+~ _/
U TTTTTTH [TTTTTTH
Manager\ Manager
HITTTTT]
Sender [TTTTTTI Receiver

Manager

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 74

2.2.4 Message Oriented Middleware (MOM) ...

d

Variants of message exchange

a

Qo

Point-to-point communication
& communication between two de ned processes
& simplest model: asynchronous communication
& enhancement: request/reply model
a enables synchronous communication via asynchronous
middleware
Broadcast communication
a Message is sent to all reachable receivers
& one implementation: publish/subscribe model
publishers publish messages/news on a topic

subscribers subscriber to certain topics
mediation via a broker

QJo

Qo Qo

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

2.2.4 Message Oriented Middleware (MOM) ...

75

Example: Java Message Service

Qo Qo

Qo

Qo

Qo

Part of the Java Enterprise Edition (Java EE)
Uni ed Java interface for MOM services

Distinguishes two roles:

a JMS provider: the respective MOM server
& JMS client: sender or receiver of messages

JMS supports:

& asynchronous point-to-point communication
& request/reply model

& publish/subscribe model

JMS de nes corresponding access objects and methods

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

76

2.2 Communication-oriented Middleware ... "

2.2.5 Summary

a

a

Tasks: Communication, dealing with heterogeneity, error handling

Programming models:

& message-oriented model (asynchronous)
a basis: message queues
a re nements:
& request/reply model (synchronous)
& publish/subscribe model (broadcast)
remote procedure or method calls
synchronous: request and response
a generated stubs for (un-)marshaling

Qo

Q_)o

Roland Wismiuller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 7

2.3 Application-oriented Middleware n

Qo

Qo

Based on communication-oriented middleware

Extends it by:
4 runtime environment

a services
& component model

| Application || Application || Application
component component component

@ Component model @

Services Runtime environment S€rvices

Communication infrastructure

Operating system / distributed system

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 78

2.3.1 Runtime environment "

a

Qo

Based on node operating systems of the distributed system
a4 Operating system (OS) manages processes, memory, /O, ...
provides basic functionality

starting / stopping processes, scheduling, ...
a interprocess communication, synchronization, ...

Qo

Q_)o

Runtime environment extends functionality of the OS:
& improved resource management
a e.g. concurrency, connection management
& improved availability
& improved security mechanisms

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 79

2.3.1 Runtime environment ... "

Resource management

a

Qo

Middleware goes beyond simple OS functionality

a4 e.g. independently managed main memory areas with
individual security criteria

a4 pooling of processes, threads, connections
a are created for stock and made available as required

possible, since middleware is speci c to certain classes of
applications

Qo

Goal: improved performance, scalability and availability

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 80

2.3.1 Runtime environment ... "

Concurrency

a Concurrency in this context:
& isolated parallel processing of requests

Qo

Concurrency can be implemented via processes or threads

a threads (lightweight processes): concurrent activities within
processes

a threads in the same process share all resources
& advantages and disadvantages:

a processes: high resource requirements, not well scalable,
good protection, with low concurrency

a threads: well scalable, no mutual protection, with high
concurrency

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 81

2.3.1 Runtime environment ... n

Concurrency ...
a Middleware takes over automatic generation / administration of
threads in the case of concurrent orders, e.g.
& single-threaded
a only one thread, sequential processing
thread-per-request
a a new thread is created for each request
thread-per-session
a a new thread is created for each session (client)
thread pool

a xed number of threads, incoming requests are distributed
automatically

4 saves thread generation costs
& limits resource consumption

Qo

Qo

Qo

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 82

2.3.1 Runtime environment ...

d

Connection management

a Connection here means: endpoints of communication channels

QJO

a

Qo

occur at tier boundaries (between process spaces)
a e.g. client/server interface, database access

are assigned to a process/thread, if in the active state

require resources (memaory, processor time)
opening and closing connections is costly

To save resources: pooling of connections

a
a

a

connections are initialized to stock and placed in pool

each thread/process receives a connection on demand

after use: return connection to pool

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

2.3.1 Runtime environment ...

83

Availability

a

Qo

Qo

Requirement to the application,
but mainly implemented by the runtime environment

Downtimes are caused by

a
a

a

failure of a hardware or software component
overload of a hardware or software component
maintenance of a hardware or software component

Frequent technology for ensuring availability: cluster

a
a

a

replication of hardware and software
cluster appears externally as one unit
two types: fail-over cluster / load-balancing cluster

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

84

2.3.1 Runtime environment ... "

Security

a Distributed applications are vulnerable due to their distribution

o

a Middleware supports different security models

a Security requirements:

o

a authentication :
a proves the identity of the user / a component
a e.g. by password query (for users) or cryptographic

techniques and certi cates (for components)

& authorization :

a de nition of access rights for users to speci ¢ services
& or more ne grained: methods and attributes

a requires secure authentication

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 85

2.3.1 Runtime environment ... n

Security ...

a Security requirements ...:
& con dentiality

a information cannot be intercepted during transmission in
the network
a technique: encryption
a integrity
a transmitted data cannot be changed without being noticed
a techniques: cryptographic checksum (message digest,
ngerprint), digital signature
a digital signature also ensures authenticity of the sender

Roland Wismdiller

Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 86

2.3.1 Runtime environment ...

Security ...

a Security mechanisms:

& encryption
a symmetric (e.g. IDEA, AES)
& same key for encryption and decryption
a asymmetric (public key algorithms, e.g. RSA)
& public key for encryption
& private key for decrypting
a digital signature
a ensures integrity of a message and authenticity of the
sender as well as nonrepudiation
a4 certi cate
a certi es that public key and person (or component) belong

together
Egtlﬁggsvsvﬁ?g#qlg " verteilte Systeme Distributed Systems (1/11) 87
2.3.2 Services n
Name service (directory service) (+ 4)
a Publication of available services
& in the intranet or Internet
a Assignment of names to references (addresses)
& name serves as a unique / unchangeable identi er
& the client can request the address of a service via its name
a address can change e.g. at restart
& goal: decoupling of client and server
a Examples: JNDI, RMI registry, CORBA interoperable naming

service, UDDI registry, LDAP server, ...

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 88

2.3.2 Services ... "

Session management

a

Qo

Qo

In interactive systems: each instance of a client is assigned its
own session

o

a deleted when logging out or closing the client

Session stores all relevant data (in main memory)

& e.g. identi cation of the user, browser type, " shopping cart”
data stored in the server or in the client

transient data: deleted at the end of the session

persistent data: is written to a data carrier (database) at the
end of the session.

Qo Qo

Qo

Middleware implements/supports the assignment of requests to
sessions (often transparent)

a4 e.g. cookies, HTTP-sessions, session beans, ...

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 89

2.3.2 Services ... n

Transaction management (+ 7.4)

a

Qo

Qo

Service for interactive, data-centric applications
& consistency / integrity of data is important

o

a this means that the entire (maybe distributed) dataset must
represent a valid state in itself

Typical sequence in applications:

client requests data

client changes the data

client requests that the data be rewritten

problem: steps 1-3 could be performed by two clients at the
same time

A

Qo

Transaction management allows execution of a sequence of
actions as an atomic unit

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 90

2.3.2 Services ...

d

Persistence service

a

Qo

Qo

Persistence: all measures for the permanent storage of main

memory data

Persistence service: intelligent interface to the database

a integrated in middleware or as an independent component

& most important service for data-centered applications besides

transaction management

Most common type: object-relational mapper (OR-Mapper)

& maps objects in the main memory to tables in a relational

database

& mapping rules are de ned by application developers

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

2.3.2 Services ...

Distributed Systems (1/11)

91

Persistence service ...

> | Object B
% Object A Varl Object C
= Varl Var2
= var? A Varl
> Var3 Var2
A A
T OR mapper
y y y
@ Table A Table B
8 Varl |Var2 |Var3 |Vard Varl|Var2 |Var3 |Var4 |Var5
]
©
Q

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

92

2.3.3 Component model "

o

a Components: “large” objects for structuring applications

a A component model de nes:

o

a the term “component”
a structure and properties of the components
a mandatory and optional interfaces

a interface contracts

a how do components interact with each other and with the
runtime environment?

& component runtime environment

a management of the life cycle of components

a implicit provision of services: component only speci es it s
requirements (e.g. persistence)

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 93

2.3.4 Middleware Technologies n

a Object request broker (ORB)
a distributed objects, remote method calls

a variety of services, only basic runtime environment
& example: CORBA

Qo

Application server

a focus: support of application logic (middle tier)

& services, runtime environment, and component model
& today only as part of a middleware platform

Qo

Middleware platforms
a4 extension of application servers: support of all tiers
a distributed applications as well as EAI
a examples: Java EE/EJB, .NET/COM, CORBA 3.0/CCM

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 94

2.3.5 Summary

Application-oriented middleware

a Runtime environment
& resource management, availability, security

Services

gJo

& name service, session management, transaction
management, persistence service

Q_’)o

Component model

& de ntion of components, interface contracts, runtime
environment

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

95

Distributed Systems

Summer Term 2020

3 Distributed Programming with Java RMI

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

96

3 Distributed Programming with Java RMI ...

Content

Qo Qo

Q_)o

g_)o

Introduction
Hello World with RMI

RMI in detail

a4 classes and interfaces, stubs, name service, parameter
passing, factories, callbacks, ...

Deployment: loading remote classes
& Java remote class loader and security manager

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

3 Distributed Programming with Java RMI ...

97

Literature

o

a

Qo Qo Qo Qo

Qo

WWW documentation and tutorials from Oracle

a http://docs.oracle.com/javase/6/docs/api/index.html
java/rmi/package-summary.htmil

a http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136424.html

Hammerschall: Ch.. 5.2

Farley, Crawford, Flanagan: Ch. 3
Horstmann, Cornell: Ch. 5

Orfali, Harkey: Ch. 13

Peter Ziesche: Nebenlau ge & verteilte Programmierung,
W3L-Verlag, 2005. Ch. 8

Roland Wismdller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

98

3.1

Introduction "

Qo

Qo

Qo

Java RMI is an integral part of Java
a4 allows use of remote objects

Elements of Java RMI:

Qo

remote object implementations
client interfaces (stubs) to remote objects
server skeletons for remote object implementations

Qo Qo

Qo

name service to locate objects in the network

Qo

service for automatically creating (activating) objects
communication protocol

Qo

Java interfaces for the rst ve elements
& inthe package java.rmi and its subpackages

3.1

Roland Wismdiller -
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 99

Introduction ... "

Qo

Qo

Qo

Java RMI requires that all objects (i.e., client and server) are
programmed in Java.

& in contrast to, e.g., CORBA

Advantage: seamless integration into the language
& use of remote objects is (almost!) identical to local objects

o

a including distributed garbage collection

Integration of objects in other programming languages:
& “wrapping” in Java code via Java Native Interface (JNI)
a use of RMI/IIOP: interoperability with CORBA
a direct communication between RMI and CORBA objects

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 100

3.1 Introduction ... ‘I

(Animated slide)

Distributed Objects

Node 1

— |ocal reference -~ ~» remote reference

a Remote references can be used just like local references

a Objects can occur in client and server roles

Egtlﬁggsvsvﬁ?é%lg " verteilte Systeme Distributed Systems (1/11) 101
3.1 Introduction ... n

3.1.1 RMI Architecture

:

Stub / skeleton
Stub layer Skeleton
[

[
Remote reference Remote reference |Remote reference
layer manager

manager
I I

=D (soner)
i

RMI system

RMI transport layer

102

Roland Wismlller Distributed Systems (1/11)

Betriebssysteme / verteilte Systeme

3.1.1 RMI Architecture ... "

Stub/Skeleton Layer

a Stub: local proxy object for the remote object
a Skeleton: receives calls and forwards them to the correct object
a Stub and skeleton classes are automatically generated from an
interface de nition (Java interface)
a As of JDK 1.2: skeleton class is generic
& skeleton uses re ection mechanism of Java to call methods of
server object
& re ection allows you to query the method de nitions of a clas s
and to generically call methods at runtime
a As of JDK 1.5: stub classes are created at runtime
a with the Java class Proxy
Betobseyeiame / verteilte Systeme Distributed Systems (1/11) 103
3.1.1 RMI Architecture ... n

Remote Reference Layer

a De nes call semantics of RMI
& in JDK 1.1: unicast only, point-to-point
a call is routed to exactly one existing object
a as of JDK 1.2 also activatable objects

a object will be (re-)activated rst, if necessary
& new object, state is restored from hard disk
& also possible: multicast semantics
a proxy sends request to a set of objects and returns the rst
response

a Also: connection management, distributed garbage collection

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 104

3.1.1 RMI Architecture ...

Transport Layer

a

gJo

Q_)o

Connections between JVMs
a basis: TCP/IP streams

Proprietary protocol: Java Remote Method Protocol (JRMP)
a allows tunneling the connection via HTTP (due to rewalls)

o

a allows you to de ne your own socket factory, e.g. to use
Transport Layer Security (TLS or SSL)

As of JKD 1.3 also RMI-IIOP
& uses IIOP (Internet Inter-ORB Protocol) from CORBA

o

a thus: direct interoperability with CORBA objects

3.1

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 105

Introduction ... n

3.1.2 RMI Services

a

Name service: RMI Registry

o

a registers remote references to RMI objects under freely
selectable uniqgue names

Qo

a client can then get the corresponding reference for a name

a technical: registry sends serialized proxy object (client
stub) to the client.

a the location of the required class les may also be
transferred (see 3.4.1)

Qo

RMI can also be used with other naming services, e.g. via
JNDI (Java Naming and Directory Interface)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 106

3.1.2 RMI Services ... "

a Object Activation Service

& usually: remote reference to RMI object is only valid as long as
the object exists

a if the server or the server JVM crashes: object references
become invalid

& references change on restart!
a RMI Activation Service introduced with JDK 1.2
& starts server objects on request of a client

a server object must register an activation method with the
RMI Activation Daemon

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 107

3.1.2 RMI Services ... n

a Distributed Garbage Collection

o

a automatic garbage collection of Java also works for remote
objects

Qo

server-side JVM manages a list of remote references to
objects

Qo

references are “leased” for a certain time
reference counter of the object is decremented, if

a client deletes the reference (e.g., end of the lifetime of the
reference variable), or
a client does not renew the lease in time

4 reason: remote reference layer cannot explicitly “log off”
an object, if the client crashes

& default setting: 10 min.

Qo

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 108

3.2 Hello World with Java RMI

d

Structure:
Client JVM T Server JVM
interface Hello {
String sayHello();
Client class Server class
class HelloClient { class HelloServer
implements Hello {
Hello h; String sayHello() {
return "Hello World":
s = h.sayHello(); }

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

3.2 Hello World with Java RMI ...

109

Development Process:

Design the interface for the server object

Implement the server class

Develop the server application to include the server object

Develop the client application with calls to the server object

a ~ W D PE

Compile and start the system

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

110

3.2 Hello World with Java RMI ...

Designing the Interface for the Server Object

a

a

Qo

Qo

Speci ed as normal Java interface

Must extend java.rmi.Remote
& no inheritance of operations, only marking as remote interface
Each method must declare to raise the exception
java.rmi.RemoteException (or a base class of it)
& base class for all errors that may occur

a in the client, during transmission, in the server

No restrictions compared to local interfaces
& but: semantic differences (parameter passing!)

3.2 Hello World with Java RMI ...

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 111

Hello-World Interface

Import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Hello extends Remote {

String sayHello() throws

oteException;

Marker interface, RemoteException
contains no methods, indicates error in the
marks interface as remote object or

RMI interface during communication

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 112

3.2 Hello World with Java RMI ... "

Implementing the Server Class

a A class that is to be usable remotely must:
& implement a given remote interface
& usually extend java.rmi.server.UnicastRemoteObject
a de nes call semantics: point-to-point
& have a constructor that declares to throw a RemoteException
a creation of object must be done in a try-catch block

a Methods usually do not need to specify throws RemoteException
& because they don't throw the exception themselves

Egtlﬁggsvsvyigg(r%lﬁlg r/ verteilte Systeme Distributed Systems (1/11) 113

3.2 Hello World with Java RMI ... n

Hello-World Server (1)

import java.rmi.*;
import java.rmi.server.UnicastRemoteObiject;

public class HelloServer extends UnicastRemoteObject
implements Hello {
public HelloServer() throws RemoteException {
super();
}
public String sayHello() {
return "Hello World!"; Remote method

}

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 114

3.2 Hello World with Java RMI ... "

Development of the Server Application to Include the Server
Object
a Tasks:

& creating a server object

a registering the object with the name service
a under a speci ed public name

a Typically not a new class, but main method of the server class

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 115

3.2 Hello World with Java RMI ... n

Hello-World Server (2)

public static void main(String argsl]) {
try {
HelloServer obj = new HelloServer();
Naming.rebind("'rmi://localhost/Hello-Server", obj);

}

catch (Exception e) {
System.out.printin
e.printStackTrace();

rror: " + e.getMessage());

) Create the Register the server object
under the name "Hello-Server"

with the name server (RMI registry,
local host, port 1099)

} server object

Roland Wismdller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 116

3.2 Hello World with Java RMI ... "

Development of the Client Application with Calls to the Serv er
Object

a Client must rst use the name service to get a reference to the
server object from the name service

a4 type cast to the correct type required

a Then: any method can be called
& no syntactical differences to local calls

a Note: client can get remote references in other ways as well
& e.g. as return value of a remote method

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 117

3.2 Hello World with Java RMI ... n

Hello-World Client

Import java.rmi.*;
public class HelloClient {
public static void main(String argsl]) { Get object reference

try { _ from name server
Hello obj =

(Hello)Naming.lookup("'rmi://bspc02/Hello-Server");

String message = obj.sayHello();
System.out.printin(message);

catch (Exception e) { Call the method :
on the remote object
}

}}

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 118

3.2 Hello World with Java RMI ...

Compiling and Starting the System

a Compiling the Java sources

o

HelloClient.java

Qo

Invocation: javac *.Java

Qo

HelloClient.class

Qo

a for clients up to JDK 1.4:

a source les: Hello.java , HelloServer.java |,

creates Hello.class , HelloServer.class |

Creating the client stub (proxy object)

a invocation: rmic -v1.2 HelloServer
a creates HelloServer _Stub.class

& as of JDK 1.5: client creates proxy class at runtime
a using java.lang.reflect.Proxy

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

3.2 Hello World with Java RMI ...

119

Compiling and Starting the System ...

(HeIIoCIient.java) (Hellé.java) (HeIIoServer.java)

N\

Qavad

[HeIIoCIient.cIass) (Hello.class)

[Hello.class) [HeIIoServer.cIasg

Client side

@ Server side

(HelloServer_Stub.cIass)

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

120

3.2 Hello World with Java RMI ... "

Compiling and Starting the System ...

a Starting the naming service

o

a invocation: rmiregistry [port]

a for security reasons, objects can only be registered on the
local host

a i.e. RMI registry must run on server computer
a4 standard port: 1099

Qo

Starting the server
& invocation: java HelloServer

Qo

Starting the client
& invocation: java HelloClient

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 121

Notes for slide 121:

The example assumes that the class Hello.class (and, if applicable, also
HelloServerStub.class) are found using the local classpath:

a when starting rmiregistry
a when starting HelloServer

a when compiling and starting HelloClient

121-1

3.2 Hello World with Java RMI ...

(Animated slide)

Execution of the Example

Client , Server
computer

computer

HelloClient

Stub

objeste”

rmiregistry
Test F>O

Foo —0
Hello serve ~\.O

7'
Obj_sayHe”oO : He||OServer
I Remote
: object
|
|
Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 122
3.3 RMIin Detall |_I
3.3.1 Classes and Interfaces
javalang. ljavaio
: Object . |OException :
| |
::::::::::::: ____ :I___::__::__-%__—_:__—_:-I
| .
! <<interface>> RemoteException :
! Remote I
1 1
: {A Naming :
: RemoteObject [:
| |
: Zﬁ RemoteServer :
! RemoteStub [!
|
Ljava.rmi N UnicastRemoteObject ||
rjava.rmi.server [US€s ZF |
HelloClient HelloServer

Roland Wismdiller

Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

123

3.3.1 Classes and Interfaces ...

Interface Remote

a Every remote object must implement this interface

a Does not provide methods, serves only as a marker

Class RemoteException

a Superclass for all exceptions that can be triggered by the RMI

system, for example, with
& communication errors (server not reachable, ...)

a (un-)marshalling errors
& protocol errors

a Each remote method must specify RemoteException (or a base

class of it) in the throws clause

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

3.3.1 Classes and Interfaces ...

124

d

Class RemoteObject

Qo

Base class for all remote objects

Rede nes the methods equals, hashCode and toString
toStub() returns a reference to the stub object
getRef() returns remote reference (= Java class)

a used by the stub to call methods

Qo Qo Qo

Class RemoteServer

a Base class for all server implementations
& UnicastRemoteObject, Activatable

a Method getClientHost() : host address of the client of the
current RMI call
a setLog() and getLog() : logging of RMI calls

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

125

3.3.1 Classes and Interfaces ...

Class UnicastRemoteObject

a

Qo

Qo Qo

Implements remote object with the following properties:

o

process (JVM) is still running

a references to the object are only valid as long as server

a client call is routed to exactly one object (via TCP connection),

no replication
Constructor allows de nition of port and socket factories
& so that e.g. connections via TLS/SSL can be realized

Static method exportObject() makes object available via RMI

Static method unexportObject() cancels availability

Class RemoteStub

a

Base class for all client stubs

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

3.3.1 Classes and Interfaces ...

126

Class Naming

a

a

Qo

Allows easy access to RMI registry

Important methods:

o

a bind() /rebind() : registers object under given name
& lookup() : get object reference to a name

Names are given in URL format

o

a also de ne the host and port of the RMI registry.
a structure of the URL:
rmi:// bspc02:1234/Hello

i
T Name of the registered Object
Port of the RMI registry
Host of RMI registry
Protocol (always rmi)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

127

Notes for slide 127:

The method rebind() overwrites an existing entry with the same name, while bind()
throws an exception in this case.

Another more exible way to access the RMI registry is to use t he LocateRegistry
class and the Registry interface in the java.rmi.registry package.

127-1
3.3 RMIin Detail ... |_I
3.3.2 Special Features of Remote Classes
a Comparison of remote objects
& Comparison with == refers only to the stub objects
a Result is false , even if both stubs refer to the same remote
object

& comparison with equals() returns true if both stubs refer to
the same remote object

JVM1 JVM?2
stubl O- --_L_
“>() Remote | o411 1= stub2
stub2 O— -1°1 object
stubl.equals(stub2)
Rotand Wismuller Distributed Systems (1/11) 128

Betriebssysteme / verteilte Systeme

3.3.2 Special Features of Remote Classes ... "

a Method hashCode()
& used by container classes HashMapHashSetand others

o

a Hash code is calculated only from the object identi er of the
remote object

a same remote object) same hash code
a but the content of the object is ignored

& consistent with behavior of equals()

a Cloning objects
& cloning of the remote object is not possible by calling clone()
on the stub
& cloning of stubs neither necessary nor meaningful
Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 129
3.3 RMIin Detail ... d

3.3.3 Parameter Passing

a Parameters passed to remote methods

o

a either via call-by-value
a or via call-by-reference

Qo

The mechanism used depends on the type of the parameter

Qo

Final decision may only be made at runtime!

Qo

The return of the result follows the same rules as for parameter
passing

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 130

3.3.3 Parameter Passing ...

Parameter Passing for Local Methods

a Java supports two kinds of types:

a value types : simple data types
a boolean, byte, char, short , int , long, float , double
a are passed to local methods by value
a thatis, the method receives a copy of the value

a reference types : classes (incl. String and arrays)

a are passed to local methods by reference

a thatis, the method works on the original object
and can also change object if required

3.3.3 Parameter Passing ...

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 131

Parameter Passing for Remote Methods

a

a

Value types: are always passed by value

Reference types: dependent on the concrete object
object can be serialized: call-by-value

object belongs to a class that implements the Remoteinterface:
call-by-reference

neither: error (java.rmi.MarshalException)
both: ?7?! (this case is to be avoided!)

Qo

Qo

Qo

Qo

Qo

decision is made only at runtime

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 132

3.3.3 Parameter Passing ...

Call-by-Value (Serializable Objects)

a

a

Qo

Qo

Class must implement interface java.io.Serializable

Serializable objects can be transferred over a network

& only the data is transferred, the code (class le) must be
available at the receiver!

Default serialization of Java:

Qo

all attributes of the object are serialized and transferred

Qo

recursive procedure!

Qo

prerequisite: all attributes and all base classes can be
serialized

Application speci c serialization is possible:
& implement the methods writeObject and readObject

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

3.3.3 Parameter Passing ...

133

d

Passing a Serializable Object

Original
Client Stub Skele- Server
object param object ton object
I I I I I
1 op(param : : :
P ;) . serialize : :
. param . Independent |
co
: ~h _ deserialize %) :
, Network param \ ,
l connection .
! _ssereate>> _Ivaram| |
| I |
n op(param) 1 n
| I
| | m
|
| —-—
| |
| . | |

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

134

3.3.3 Parameter Passing ... "

Call-by-Reference (Remote Objects)

a

a

Qo

Class of the parameter object must implement an interface that
extends Remote

o

a parameter type must be this interface
& class is typically derived from UnicastRemoteObject

A serialized stub object is transferred

a from JDK 1.5: stub class is created dynamically

& (up to JDK 1.4 stub class must be generated by rmic and be
available at the server)

If the server calls methods on the parameter object:

a calls are routed to the original object using RMI

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 135

Notes for slide 135:

More precisely, starting with JDK 1.5, the receiver dynamically creates the stub class if
the sender cannot load a stub class created with rmic .

The reason for this behavior is that during serialization, information about how the class
was loaded at the sender is also transferred. If the sender has loaded the class locally
from a le, the receiver also receives this information and t hen also tries to load the
class locally (although it could just as well create it dynamically). See also slide 152.

135-1

3.3.3 Parameter Passing ...

Passing a Remote Object

Client aran | Paran Stub Skelef Servef
object P stub | | object ton object
I I I I I I
I op(param) : :
. toStub(param : :
paramStub o | .
i Bl serialize 1 n
. . paramStub L :
. gt deramaith '
| | |
n n Network param;
| | connection _ Sscreate>2 | Tsiub |
| | I |
! l op(paramStub) .
I
: : L M
| SR e | R | O —— =
T | | T T |]
Roland Wismuller Distributed Systems (1/11) 136

Betriebssysteme / verteilte Systeme

3.3.3 Parameter Passing ...

Examples

a See WWW:

o

a Hello-World with call-by-value parameter

a Hello-World with call-by-reference parameter

Roland Wismdiller

Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

137

3.3.3 Parameter Passing ...

Arrays and Container Objects

a Arrays and container objects (from the Java Collection

Framework, java.util) can be serialized
a i.e., they will be reinstantiated at the receiver

a To the elements of the array / container the same rules apply as
to simple parameters
a for mixed content: elements are passed by value or by
reference depending on their actual class
Egtlﬁggsvsvﬁ?g#qlg " verteilte Systeme Distributed Systems (1/11) 138
3.3 RMIin Detail ... d

3.3.4 Remote Object References as Results

a

Qo

Qo

Frequently: via RMI registry, the client receives a reference to a
remote object, which provides references to other objects

a the remote object may also create these objects on demand
(this is called factory object or factory class)

Example: server for bank accounts

& registration of all account objects with RMI registry not useful

o

a instead: registration of a manager object that returns the
reference to the account object for a given account number

a if necessary, it can create a new object (from a database)

Note: RMI does not allow remote object creation
& client cannot create objects on a remote host

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 139

3.3 RMI in Detall ...

3.3.5 Client Callbacks

a

Qo

Qo

Qo

Frequently: server wants to make calls in the client
& e.g. progress bar, queries, ...

For this: client object must be an RMI object
a pass this reference to the server method

In some cases, you cannot inherit from UnicastRemoteObject ,
e.g. for applets

o

a then: export the object using
UnicastRemoteObject.exportObject(obj,0);

Qo

attention: when calling exportObject(obj) , no dynamic stub
Is created, even with JDK 1.5 and later

Example code: see WWW (Hello-World with callback)

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 140

Notes for slide 140:

The second parameter of exportObject() is the port on which the server object lis-
tens. A 0 means to choose any free port, just like the variant with only one parameter
does.

140-1

3.3 RMIin Detail ... (I

3.3.6 RMI and Threads

a RMI does not specify how many threads are provided on the
server side for method calls
a only one thread, one thread per call, ..
a This means that several server methods can be active at the
same time
& requires correct synchronization (synchronized)!
a Client-side locking of a remote object using a synchronized block
IS not possible
a only local stub is locked
& alock must be implemented using methods of the remote
object if necessary
Egtlﬁggs\/s\/)}i?éwag ' verteilte Systeme Distributed Systems (1/11) 141
3.4 Deployment n
a Deployment : distribution, transfer and installation of the
components of a distributed application
& speci cally for RMI: which class le has to go where?
a Server, RMI registry and client need the class les for:

the remote interface of the server

Qo

all classes or interfaces that are used in the server interface
(recursively)

Qo

Qo

(up to JDK 1.4 also the stub classes for all used remote
interfaces)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 142

3.4 Deployment ... "

a Client and server additionally need the class les for:

o

a their own implementation
a all classes of serializable objects that they receive
a as a parameter or a result of method calls

& (up to JDK 1.4 also the stub classes for all remote objects they
receive)

a Problems with static installation of class les for serialized

objects (and stubs):
& dependency between client and server
a method parameters, result objects
& change of classes requires new installation
a nulli es an advantage of distributed applications

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 143

3.4.1 Remote Class Loading in Java RMI n

Class loader

o

Qo

Qo

Qo

Class loaders are used for loading classes (and interfaces) at
runtime

& more exactly: for loading class les
Each class is loaded only once

Class loaders are Java objects themselves
& base class: java.lang.ClassLoader

RMI uses its own class loader
& java.rmi.RMIClassLoader

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 144

3.4.1 Remote Class Loading in Java RMI ... "

Remote Loading of Classes

a RMiIClassLoader allows to load classes also from remote
computers
a viaHTTP (web server) or FTP
& URL is de ned via codebase property when the JVM is started
a Allows central storage of the necessary les
& “automatic” deployment
a Restrictions:
a all classes named in the client code must be available locally
& client must de ne its own security manager
Egtlﬁggsvsvﬁ?é%lg r/ verteilte Systeme Distributed Systems (1/11) 145
3.4.1 Remote Class Loading in Java RMI ... n
Example
BankClient > <<interface>>
main() > <<interface>> BankS({aFrzver ol
<- - - - emote
. Account
<<interface>>
- - - etAccount(...): Accou
Entry < {Remote} g i) a9
: etStatement(...): Eptry
ge:’li\)ate().t.(.). °) " Unicast :
getAmount(): ... :
getText(): ... —QO ? RemoteObject :
Serializable | i !
, I [
Entrylmpl Accountimpl BankServerimpl

a The class les for BankServer, Account and Entry must be

a

available locally at the client (BankClient)
Entrylmpl can be remotely loaded by client

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 146

3.4.1 Remote Class Loading in Java RMI ...

d

Local and Remote Loadable Classes

a Local loading (via CLASSPATIFhust be possible (for client and

server) for:

o

all classes mentioned by name in those classes, ..
a i.e. everything that is needed to compile the code

Qo

Remotely loadable:
& stub classes of remote objects

a subclasses accessed only via polymorphism
a i.e. the code only uses a superclass or interface

The RMI registry can load all required classes remotely

Qo

a all classes (and interfaces) named in the client/server code,

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

3.4.1 Remote Class Loading in Java RMI ...

147

Example: Hello-World with Callback and Result Object
a Interfaces (see WWW):

public interface Hello extends Remote

HelloObj getHello(AskUser ask) throws RemoteException;

}

public interface AskUser extends Remote

boolean ask(String question) throws RemoteException;

}
public interface HelloObj
{

void saylt();

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

148

3.4.1 Remote Class Loading in Java RMI ...

Example: How are the Classes Loaded?

a

Q_)o

Qo

Interfaces Hello.class , AskUser.class , HelloObj.class

o

a must be available locally at the client
& can be loaded remotely by the RMI registry

Implementation HelloObjimpl.class of HelloObj

o

a can be loaded remotely by the client
& is not required by RMI registry

Stub classes for the two remote interfaces
a are usually generated dynamically (not loaded) as of JDK 1.5

o

a but can also be loaded remotely

3.4.1 Remote Class Loading in Java RMI ...

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 149

d

Example: Necessary Changes in the Client

a

Qo

Using the RMI security manager

public static void main(String args[]) {
System.setSecurityManager(new RMISecurityManager());

De nition of security policy: policy le :
grant {
permission java.net.SocketPermission "myserver:1024-"
"connect,accept”;
permission java.net.SocketPermission "www.bsvs.de:80"
“connect”;
I3
a grants local classes (client!) the following permissions:
a connection to/from myserver on non-privileged ports:
& RMI registry (1099), server and callback object (dyn.)
a connection to the web server (port 80)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 150

3.4.1 Remote Class Loading in Java RMI ... "

Example: Deployment

a All classes to be loaded remotely are packed into one archive
a The archive is made available via a web server
a Start the server with a codebase, e.qg:
a4 java -Djava.rmi.server.codebase="http://www.bsvs.de/
jars/HelloServer.jar" HelloServer
a the codebase property speci es the URL to the JVM under
which the classes are to be loaded
a server passes codebaseto RMI registry when registering the
server object
& RMI registry passes codebase to client
a Start of the client with speci cation of the policy le, e.g:

& java -Djava.security.policy=policy HelloClient

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 151

Notes for slide 151:

The RMI registry must not nd the classes to be loaded remotel y locally (via the CLASSP;
otherwise it does not pass the codebase to the client.

As of JDK 7 (Update 21), the default behavior for the codebase has been changed. Up
to this version, the codebase speci ed during the transfer o f the serialized object was
used for remote loading. In the newer versions, only the locally speci ed codebase is
used. Therefore, the RMI registry and the client must be started as follows:

a rmiregistry -J-Djava.rmi.server.codebase="http://www .bsvs.de/jars/
HelloServer.jar"

a java -Djava.rmi.server.codebase="http://www.bsvs.de/ jars/
HelloServer.jar" -Djava.security.policy=policy HelloC lient

Alternatively, the behavior can be changed to the old default (not recommended):
a rmiregistry -J-Djava.rmi.server.useCodebaseOnly=fals e

a java -Djava.rmi.server.useCodebaseOnly=false
-Djava.security.policy=policy HelloClient

151-1

3.4.1 Remote Class Loading in Java RMI ... "

Procedure for Transferring Objects

Send object Receive serialized object
r $ ~N . t (" U)
Serialize [Class in true Ioaggd
i RAM
| object |] | class
v ~N 4)
(Determine [Class Load
| class loader | available class
cl locally] ___locally
ass true s 2
Load class
:gggﬁ;% e [Codebase true from L.
available] __codebase*)
Send false (Deserialize)
codebase | object
% ClassNotFound é * must tie %Ipecm
i explicitly as ¢
Exception p JD¥< .
Egtlﬁggsvsvﬁ?é%lg " verteilte Systeme Distributed Systems (1/11) 152
3.4.2 Java Security Manager n

a JVM can be equipped with a security manager if required
a for Java applications: System.setSecurityManager()
a for Java applets: by default

Qo

Security manager checks, among other things, whether the
application is allowed to

Qo

access a local le,

Qo

establish a network connection,
stop the JVM,

create a class loader,

read AWT events, ...

Qo Qo Qo

Qo

Permissions are speci ed in a security policy
a if the speci cations are violated: exception

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 153

3.4.2 Java Security Manager ... "

Security Policy
a Assigns permissions to codes from speci ¢ sources

a Code source can be described by two properties:

o

a code location: URL where the code was loaded from
a certi cates (for signed code)

Qo

Permissions allow access to certain resources

& permissions are modeled by objects, but are usually speci e d
in the policy le

& e.g. FilePermission p =
new FilePermission("/tmp/*", "read,write");

a or permission java.io.FilePermission "/tmp/*",

"read,write";
Egtlﬁggsvsvﬁ?é%lg " verteilte Systeme Distributed Systems (1/11) 154
3.4.2 Java Security Manager ... "

Hierarchy of Permission Classes (JDK 1.2)

Use only Permissioh
for testing!!! Zﬁ

|

V
AllPermission BasicPermissidn FilePermisgion SocketPer

1

Audio AWT Net Reflected || Security SQL
Permissian [Permissign | Permissiqn |Permissign [Permissign |Permissign

Permissign [Permissign | Permissign [Permissign [Permissign

Auth Logging Property] | Runtime Serializajle

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 155

3.4.2 Java Security Manager ... "

Policy File

grant {

permission java.net.SocketPermission "www.bsvs.de:80" ,
“connect"” ;
I3

grant codebase "file:" {
permission java.io.FilePermission "/home/tom/-"
"read, write" ;
permission java.io.FilePermission "[bin/*" , "execute" ;

;

grant codebase "http://www.bsvs.de/jars/HelloServer.jar" {
permission java.net.SocketPermission "localhost:1024-"
"listen, accept, connect" ;
J§

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 156

3.4.2 Java Security Manager ... "

Policy File ...

a All classes are allowed to:
a4 establish connections to www.bsvs.de, port 80

Qo

Locally loaded classes may:

a read and write les in /home/tom or (recursively) a
subdirectory of it

a execute lesinthe /bin directory

Qo

Classes loaded from http://www.bsvs.de/jars/
HelloServer.jar are allowed to:

& accept/establish network connections on/to the local
computer via non-privileged ports (1024 or higher)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 157

3.4.2 Java Security Manager ...

Further Documentation

a

g_)o

QJO

General information on policy les::
http://docs.oracle.com/javase/8/docs/technotes/guid
security/PolicyFiles.html

Overview of the permission classes::
http://docs.oracle.com/javase/8/docs/technotes/guid
security/permissions.html

Java API documentation::
http://docs.oracle.com/javase/8/docs/api/

es/

es/

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

3 Distributed Programming with Java RMI ...

158

3.5

Qo

Qo

Qo Qo

Qo

Summary

RMI allows access to remote objects
a4 transparent, via proxy objects
& proxy classes are generated automatically

a usually at runtime

Parameter passing semantics
& by value, if parameter object can be serialized

o

a by reference, if parameter object is an RMI object
Classes can also be loaded remotely (security manager!)
Name service: RMI registry

Security: RMI over SSL is possible, but not ideal

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

159

Distributed Systems

Summer Term 2020

4 Name Services

160

Distributed Systems (1/11)

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

4 Name Services ...

Content
a Basics

a Example: JNDI

Literature

a Tanenbaum, van Steen: Ch. 4.1

a Farley, Crawford, Flanagan: Ch. 7
a http://docs.oracle.com/javase/tutorial/jndi/overvie

161

Distributed Systems (1/11)

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

4.1 Basics "

Names, Addresses and IDs

a

Q_)o

Q)o

Q_)o

Name: character or bit sequence that refers to a unit
& unit: e.g. computer, printer, le, user, website, ...

Address : name of the entry point of a unit

& entry point allows access to the unit

& several entry points per unit are possible

& entry point may change over time

A position-independent name identi es a unit independently
from its entry point

ID: name with the following properties:

a D refers to at most one unit, unit has at most one 1D

a ID always refers to the same unit (not reused)

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 162

4.1 Basics ... n

Namespaces

a

Qo

Qo

represented by directed, labelled graph 0

& leaf node: named unit, hom keys
with information / status 1 D) /keys"
if required elk steen /home/steen/key:
ma K
& inner node: directory node ﬁg,é n4 eys
twmr mbox

Qo

edges are labeled with names
_ _ 6) @7 "/home/steen/mbox’
Units are named by paths in the graph:

Start node: < Label-1, Label-2, ... >
& absolute path: starting from root (of namespace)
a relative path: starting from any node

Example: names in the UNIX le system

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 163

4.1 Basics ... "

Aliasing and Linking
a Alias : alternative name for the same unit

a Possibilities for the realization of aliases:
& allow several absolute pathnames for one unit
a e.g. hard link in Unix
a a (special) leaf node stores pathname of the unit
a e.g. symbolic link in Unix

Qo

Transparent linking of different namespaces:

& a (special) directory node stores the ID of a directory node in
another namespace

a e.g. mounted le system in Unix

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 164

4.1 Basics ... n

Name Resolution

a Finding the node (or information) that corresponds to a name

a start at the start node

a look up rst label in directory table
) 1D of the next node

a etc., until the path is completely processed

Conclusion mechanism : determination of the start node

Qo

& usually implicit

Qo

Global names : resolution independent of speci c context

Qo

Local names : resolution is context-dependent
& e.g. pathname relative to working directory in Unix

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 165

4.1 Basics ...

Implementation of Naming Services

a Typical operations:
& bind(name, address, attributes)
& lookup(name, attributes)) address, attributes
& unbind(name, address)
a In distributed systems:
& namespace is stored distributed (usually hierarchically)
a for high availability: additionally replicated storage
a Name resolution can be iterative or recursive
a iterative: Server responds with address of next server
& recursive: server requests even at next server
a Example: Domain Name System (+ RN._I, 11.1)
Egtlﬁggsvsvﬁ?g#qlg ' verteilte Systeme Distributed Systems (1/11) 166
4.2 Example: JNDI n
a JNDI: Java Naming and Directory Interface
a API for access to different name and directory services

a directory service also stores attributes of objects

Java application
JNDI API
JNDI naming manager
JNDI SPI
RMI CORBA LDAP DNS Service
, , , , provider
1 1 1 1
RMI CORBA LDAP DNS
registry naming server server
service

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

167

4.2 Example: JNDI ...

a JDNI supports compound namespaces

a

managed by various name or directory services

Initial -~
context O‘ N
\
\

Context
(directory)

\

File
system

User objects

a Directories are called “contexts”

a

objects are bound to names within a context

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

4.2 Example: JNDI ...

168

The Interface javax.naming.Context for Naming Contexts

a

Important methods:

o

a

Qo o o Qo o

Qo

bind() , rebind() : bind objects to names

a bind() throws exception if name already exists
unbind() : remove names

rename() : rename

lookup() : resolve name to object

listBindings() . list of all bindings
createSubcontext() : create sub-context
destroySubcontext() : delete sub-context

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

169

4.2 Example: JNDI ...

d

The Interface javax.naming.Context for Naming Contexts ...

a Implementation class InitialContext

& for initial context (depending on the concrete name service)

a Context iIC = new InitialContext(properties);

& con guration via Properties object (Hashtable), among

others:
a "Java.naming.factory.initial"
& factory for InitialContext
a "java.naming.provider.url"
& contact information for service provider
a "Java.naming.security.principal” and
“jJava.naming.security.credentials”
& user name and password for authentication

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

4.2 Example: JNDI ...

170

Example: Accessing the RMI Registry

import javax.naming.*;

Properties props = new Properties ();

props.put("java.naming.factory.initial" :
"com.sun.jndi.rmi.registry.RegistryContextFactory"

props.put(“java.naming.provider.url" :
"rmi://localhost:1099");

Context ctx = new InitialContext (props);

obj = (Hello)ctx.lookup("Hello-Server");

message = obj.sayHello();

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

171

4.2 Example: INDI ... ‘I

Example: Accessing a Local File System

import javax.naming.*;

Properties props = new Properties ();

props.put("java.naming.factory.initial" ,
"com.sun.jndi.fscontext.RefFSContextFactory");

Context ctx = new InitialContext (props);

for (int i=0; i<args.length-1; i++)

ctx = (Context)ctx.lookup(argsli]);
NamingEnumeration<Binding> list

= ctx.listBindings(args[args.length-1]);
while (list.hasMore()) {

Binding b = list.next();

Systemout.printin(b.getName()+ ". " +b.getClassName());
}

Roland Wismdller Distributed Systems (1/11) 172

Betriebssysteme / verteilte Systeme

Distributed Systems

Summer Term 2020

5 Process Management

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 173

5 Process Management ...

Contents

o

a

a

Distributed process scheduling

Code migration

Literature

Qo Qo

Tanenbaum, van Steen: Ch. 3
Stallings: Ch. 14.1

5 Process Management ...

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 174

5.1 Distributed Process Scheduling

a

Qo

Qo

Typical: middleware component that

a decides on which node a process is executed
& and probably migrates processes between nodes

Gloals:

a balance the load between nodes

& maximize the system performance (average response time)
a also: minimize the communication between nodes

& meet special hardware / resource requirements

Load: typically the length of the process queue (ready queue)

& sometimes resource consumption and communication volume
are considered, too

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 175

5.1 Distributed Process Scheduling ... "

Approaches to distributed scheduling

a Static scheduling

& mapping of processes to nodes is de ned before execution
& NP-complete, therefore heuristic methods

Qo

Dynamic load balancing, two variants:

& execution location of a process is de ned during creation and
IS not changed later

Qo

execution location of a process can be changed at runtime
(several times, if necessary)

a preemptive dynamic load balancing, process migration

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 176

5.1 Distributed Process Scheduling ... n

5.1.1 Static Scheduling

a Procedure dependent on the structure / the modelling of a job
& jobs always consist of several processes
a differences in communication structure

Qo

Examples:
& communicating processes: graph partitioning
& non-communicating tasks with dependencies: list scheduling

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 177

5.1.1 Static Scheduling ... "

(Animated slide)

Scheduling through graph partitioning S =30

a

Qo

QJO

Given: process system with S B2

o

a CPU/ memory requirements

a speci cation of communication load 6
between each pair of processes

usually represented as a graph a > (H) -

Wanted: partitioning of the graph in such a way that

& CPU and memory requirements are met for each node
a4 partitions are about the same size (load balancing)

& weighted sum of cut edges is minimal

a i.e. as little communication as possible between nodes

NP-complete, therefore many heuristic procedures

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 178

5.1.1 Static Scheduling ... n

List scheduling

a

a

Tasks with dependencies, but without communication during
execution

a tasks work on results of other tasks

Modelling
program represented as a DAG
nodes: tasks with execution times

Qo Qo

Qo

edges: communication with transfer
time

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 179

5.1.1 Static Scheduling ... "

Method

a Create prioritized list of all tasks

& many different heuristics to determine the priorities, e.g.
according to:

a length of the longest path (without communication) from the
node to the end of the DAG (High Level First with Estimated
Time, HLFET).

a earliest possible start time (Earliest Task First, ETF)

Process the list as follows:

Qo

& assign the rst task to the node that allows the earliest star t
time
& remove the task from the list

Qo

Creation and processing of the list can also be interleaved

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 180

5.1.1 Static Scheduling ... "

(Animated slide)

Example: List Scheduling with HLFET

Schedule with 3 nodes:

1 A6 4 E6 |4 G4
2l cayp MFayp/
3B4/1D5

O 2 4 6 8 10 12 14 16

a Assumption: local communication does not cost any time

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 181

5.1 Distributed Process Scheduling ... "

5.1.2 Dynamic Load Balancing

a Components of a load balancing system

& Information policy — when is load balancing triggered?
a on demand, periodically, in case of state changes, ...

& Transfer policy — under which condition is load shifted?
a often: decision with the help of threshold values

& Location policy — how is the receiver (or sender) found?
a polling of some nodes, broadcast, ...

& Selection policy — which tasks are moved?
a new tasks, long tasks, location-independent tasks, ...

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 182

5.1.2 Dynamic Load Balancing ... n

Typical approaches to dynamic load balancing

o

a

Qo

Qo

Sender initiated load balancing
new process usually start on the local node

if node is overloaded: determine load of other nodes and start
process on low-loaded node

a e.g. ask randomly selected nodes for their load, send
process if load threshold, otherwise: next node

a4 disadvantage: additional work for already overloaded node!

Qo Qo

Receiver initiated load balancing

& when scheduling a process: check whether the node has still
enough work (processes)

a if not: ask other nodes for work

Similar also for preemptive dynamic load balancing

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 183

5 Process Management ... "

5.2 Code Migration [Tanenbaum/Steen, 3.4]

a In distributed systems, in addition to data also programs are
transfered between nodes

a partly also during their execution

Qo

Motivation: performance and exibility

o

a preemptive dynamic load balancing

optimization of communication (move code to data or highly
interactive code to client)

Qo

Qo

increased availability (migration before system maintenance)
use of special HW or SW resources
use / evacuation of unused workstation computers

avoid code installation on client machines (dynamic loading of
code from server)

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 184

Qo Qo

Qo

5.2 Code Migration ... n

Models for Code Migration

a Conceptual model: a process consists of three “segments”:
a4 code segment
a the executable program code of the process
& execution segment

a4 complete execution status of the process
4 virtual address space (data, heap, stack)
4 processor register (incl. instruction counter)
& process / thread control block
& resource segment
a contains references to external resources required by the
process
4 e.g. les, devices, other processes, mailboxes, ...

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 185

5.2 Code Migration ...

Models for Code Migration ...

a Weak mobility

Qo

Qo

& only the code segment is transferred
a including initialization data if necessary
& program is always started from initial state
a examples: Java applets, loading remote classes in Java

Strong mobility

& code and execution segment are transferred
& migration of a process in execution

a examples: process migration, agents

Sender- or receiver-initiated migration

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 186

5.2 Code Migration ... n

Code Migration Issues and Solutions

a

Qo

Qo

Security: target computer executes unknown code (e.g. applet)
& restricted environment (sandbox)
a signed code

Heterogeneity: code and execution segment depend on CPU and
operating system

a use of virtual machines (e.g. JVM, XEN)

o

a migration points at which state can be stored and read in a
portable way (possibly supported by compiler)

Access to (local) resources

& remote access with a global reference

& move or copy the resource

& new binding to resource of the same type

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 187

5.2 Code Migration ... "

Process migration

a

Qo

Qo

[Stallings, 14.1]

Migration of a process that is already running
& triggered by OS or the process itself
& mostly for dynamic load balancing

Sometimes combined with checkpoint/restart function

a instead of transferring the status of the process, it can also be
stored persistently

Design goals of migration procedures:

& low communication effort

& only short blocking of the migrated process

& no dependency on source computer after migration

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 188

5.2 Code Migration ... n

Process Flow of a Process Migration

a

a

Qo

Qo

Creating a new process on the target system

Transfer the code and execution segment (process address
space, process control block), initialization of the target process
& required: identical CPU and OS or virtual machine

Update all connections to other processes
& communication links, signals, ...

a during migration: buffering at source
& then: forwarding to target computer

Delete the original process

& if necessary, retain a “shadow process” for redirected system
calls, e.g. le accesses

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 189

5.2 Code Migration ... "

Transferring the process address space

a Eager (all) : transfer the entire address space

& no traces of the process remain on source nodes

Qo

very expensive for large address space (especially if not all
pages are used)

often together with checkpoint/restart function

a Precopy : process continues to run on source node during

transfer

o

a to minimize time in which the process is blocked

& pages modi ed while the migration is in progress must be sent
again

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 190

5.2 Code Migration ... n

Transferring the process address space ...

a

Qo

Qo

Eager (dirty) : transfer only modi ed pages that are in main
memory

a all other pages are only transferred when accessed
a integration with virtual memory management
& motivation: quickly “ ush” main memory of the source node
& source node may remain involved until the end of the process

Copy-on-reference : transfer each page only when accessed
a variation of eager (dirty)
a lowest initial costs

Flushing : move all pages to disk before migration

o

a after that: copy-on-reference
a advantage: main memory of the source node is relieved

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 191

Distributed Systems

Summer Term 2020

6

Time and Global State

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

6 Time and Global State ...

192

a Synchronization of physical clocks

a Lamport's happended before relation
a Logical clocks

a Global state

Literature

a Tanenbaum, van Steen: Kap. 5.1-5.3
a Colouris, Dollimore, Kindberg: Kap. 10
a Stallings: Kap 14.2

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

193

6 Time and Global State ... "

What is the difference between a distributed system and a
single/multiprocessor system?

a Single or multiprocessor system:

o

a concurrent processes: pseudo-parallel by time sharing or
truely parallel

global time: all events in the processes can be ordered
unambiguously in terms of time

global state: at any time a unique state of the system can be
determined

Qo

Qo

g)o

Distributed system
a true parallelism
& no global time

& no unique global state

Roland Wismiiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 194

6 Time and Global State ... "

Concurrency vs. (true) parallelism

Example: 4 processes

sequential ATIEENEN G DI —

One time line, processes are not interrupted.

concurrent -JANIBE CIDUAIBNDIANBIATDI CID—

One time line, processes can be interrupted by others
at any time: interleaved execution.

SANE— Each node / process has its own
parallel B — time line! Events in different

—CcC processes can truely happen

D simultaneously.

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 195

6 Time and Global State ... "

Global Time

a

In a single/multiprocessor system

& each event can (at least theoretically) be assigned a unique
time stamp of the same local clock

Qo

for multiprocessor systems: synchronization at the shared
memory

a In distributed systems:
& many local clocks (one per node)
& exact synchronization of clocks is (on principle!) not possible
a) the sequence of events on different nodes can not (always)
be determined uniquely
a (cf. special theory of relativity)
Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 196
6 Time and Global State ... n

An effect of distribution

a

Qo

Preliminary remark: events in distributed systems

Process 1 O e - -
local events receive the message
Process 2 O » Time

send a message local event

Scenario: two processes observe two other processes

X y Z
Observer A -
X y /
Process 1 >
Process 2 o >
Observer B \ -
Z X y

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 197

6 Time and Global State ... "

An effect of distribution ...

a The observers may see the events in different order!
a Problem e.g., if the observers are replicated databases and the
events are database updates
& replicas are no longer consistent!
a Even from time stamps of (local) clocks it is not possible to
determine the order of events in a meaningful way
a Hence, in such cases:
& events with timestamps of logical clocks (+ 6.3)
& logical clocks allow conclusions to be made about causal order
Bt bsayarame verteilte Systeme Distributed Systems (1/11) 198
6 Time and Global State ... n
6.1 Synchronizing Physical Clocks [Coulouris, 10.3]
a Physical clock shows 'real' time
& based on UTC (Universal Time Coordinated)
a Each computer has its own (physical) clock
& quartz oscillator with counter in HW and if necessary in SW
a Clocks usually differ from each other (offset)
& Offset changes over time: clock drift
& typ. 10 © for quartz crystals, 10 13 for atomic clocks
a Goal of clock synchronization:

& keep the offset of the clocks under a given limit

o

a clock skew : maximum allowed deviation

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 199

6.1 Synchronizing Physical Clocks ... "

(Animated slide)

Cristian's Method

a Assumption: A and B want to synchronize their clocks with each
other

& B can also be a time server (e.g. with GPS clock)

a Protocol:

1. A sends 3. A sets its clock a A must take the
request to B to t + (t1-t0)/2 runtime of the

A © t . reply message
(t) into account
B , . a4 estimate: runtime
t = half the round
2.B reads time t and trip time
sends it to A =(tl t0)=2
Egtlﬁggsvsvﬁ?éwag r/ verteilte Systeme Distributed Systems (1/11) 200

Notes for slide 200:

What A should actually know is the transit time of the reply message from B to A. How-
ever, for reasons of principle this cannot be measured (exactly) (a measurement must

always be made with a single clock at a single location). The best approximation that

A can use is half the round trip time.

The interrupt latencies would not be a problem as long as they are known and con-
stant. However, the unknown differences in the runtimes and latencies, which lead to
unavoidable errors, are problematic.

200-1

6.1 Synchronizing Physical Clocks ... "

Cristian's Method: Discussion

a

Q_)o

Qo

Problem: runtimes of both messages may be different

a systematic differences (different paths / latencies)
& statistical uctuations of the transit time

Accuracy estimate, if minimum transit time (min) is known:

a B can have determined t at the earliest at time tO + min , at
the latest attime tl min (measured with A's clock)

a thusaccuracy ((t1 t0)=2 min)

To improve accuracy:

o

a execute the message exchange multiple times
& use the one with minimum round trip time

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 201

Notes for slide 201:

In [WRAOZ2] it is shown how to improve the accuracy of successive synchronizations
even further by looking at the “inverted” RTT (i.e. from an answer to the next request) in
addition to the RTT of the requests.

Literature

[WRAOQO2] T. Worsch, R. Reussner, W. Augustin: On Benchmarking Collective MPI

Operations, In D. Kranzimller et al. (Eds.): Euro PVM/MPI 2002, LNCS
2474, pages 271-279, 2002.
http://www.springerlink.com/content/7ygll9u0h02t8mt h

201-1

6.1 Synchronizing Physical Clocks ... "

Changing the clock

a Turning back is problematic

o

a

& order / uniqueness of time stamps

Non-monotonous “jumping” of the time also problematic

a Therefore: clock is generally adjusted slowly

& runs faster / slower, until clock skew has been compensated

Further protocols

a

o

Qo

Berkeley algorithm: server calculates mean value of all clocks

NTP (Network Time Protocol): hierarchy of time servers in the
Internet with periodic synchronization

IEEE 1588: clock synchronization for automation systems

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 202

6 Time and Global State ... "

6.2 Lamport's Happened-Before Relation

a

Qo

Qo

[Coulouris, 10.4]

In two cases, the order of events can also be determined without
a global clock:

a if the events are in the same process, local clock is suf cien t
a4 the sending of a message is always before its reception

De nition of the happened-before causality relation ! (causality
relation)

a4 if events a, b are in the same processi andt;(a) <t ;(b)
(tj: time stamp with i's clock), thena! b

a4 if a is the sending of a message and b its receipt, thena ! b
a ifa! bandb! c,thenalsoa! c (transitivity)

a ! b means, that b may causally depend on a

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 203

6.2 Lamport's Happened-Before Relation ... "

Examples
[k
Process 1 o
C g /
Process 2 -
] ‘\5(;1 f f/

Process 3 - >

/
Process 4

.—
®—
y

a Among others, we have here:
& b! ianda! h (eventsinthe same process)
a c! dande! f (sending/receiving a message)

a ¢! kanda! i (transitivity)

a g6! landl 6! g: 1 and g are concurrent (nebenlaug)

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 204

6 Time and Global State ... n

[Coulouris, 10.4]

6.3 Logical Clocks

a Physical clocks cannot be synchronized exactly

a therefore: unsuitable for determining the order in which events
occurred

Qo

Logical clocks
a refer to the causal order of events (happened-before relation)

o]

a no xed relationship to real time

Qo

In the following:
a Lamport timestamps

a are consistent with the happened-before relation
& vector timestamps

a allow sorting of events according to causality (i.e.
happened-before relation)

Roland Wismdller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 205

6.3 Logical Clocks ... "

Lamport Timestamps
a Lamport timestamps are natural numbers

a Each process i has a local counter L ;, that is updated as follows:

o

a at (more precisely: before) each localevent: L; = L; +1

& in each message, the time stamp L; of the send event is also
sent

a at receipt of a message with time stamp t:
Li =max(Li;t+1)

Qo

Lamport time stamps are consistent with the causality:

o

a a! b) L(a)<L (b), wherelL isthe Lamport timestamp
in the respective process

& but the reversal does not apply!

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 206

Notes for slide 206:

a When a local event occurs, the lamport time is incremented, before the time
stamp is attached to the event.

a When a receive event occurs, the sequence is as follows:
1. the message is received and the Lamport time stamp t is extracted from it,
2. the lamport clock is updatedto L; = max(L;;t +1) ,
3. the resulting time stamp is attached to the receive event.

206-1

6.3 Logical Clocks ... ‘I

(Animated slide)

Lamport Timestamps: Example

b i k
Process 1 - o—
1 /’5 6
C g
Process 2 - >
1 2
a 1 d f h
Process 3 - -
1 2 3 4
e 1] |
Process 4 - - >
1 2 3

a Among others, we have here:
a ¢! kandL(c) <L (k)
a g6! jandL(g) 8L (j)
a g6!l,butstillL(g) <L ()

Egtlﬁggsvsvﬁ?gr%lﬁlg " verteilte Systeme Distributed Systems (1/11) 207
6.3 Logical Clocks ... n

Vector Timestamps

a Objective: timestamps that characterize causality

o

a a! b, V(a)<V (b, whereV isthe vector timestamp
in the respective process

a A vector clock in a system with N processes is a vector of N
integers

& each process has its own vector V;

a V;[i]: number of events that have occurred so far in process i
& Vi[j1;j 6 i: number of events in process j , of which i knows
a i.e. by which it could have been causally in uenced

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 208

6.3 Logical Clocks ... "

Vector Timestamps ...

a Update of V; in process i:

before any local event: V;[i] = Vi[i]+1
Vi is included in every message sent

Qo Qo

Qo

when receiving a message with timestamp t:

Q_)o

Comparison of vector timestamps:

a V=VY, V[]l=VY]forall j=1;2;:::;N
a Vv Vo, VI[] VY] forall j=1;2;:::;N
av<v?® v vo0ryveyVyo

a4 the relation < de nes a partial order

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 209

Notes for slide 209:

a When a local event occurs, the local component of the vector time is incremented,
before the time stamp is attached to the event.

a When a receive event occurs, the sequence is as follows:
1. the message is received and the vector time stamp t is extracted from it,
2. the vector clock is updatedto Vi[j] = max(Vi[j];t[j]) forall j =

3. the resulting time stamp is attached to the receive event.

209-1

6.3 Logical Clocks ... "

(Animated slide)

Vector Timestamps: Example

b i Kk
Process 1 O (1,0.0,0) *—
; / @141)° (.14
C
Process 2 (0.1,0,0) o—(0:2.0.0 -
Process 3 %(0’0'1'0) d0,1,2,0 h
(0’1’31]_-) (Oa1a4a1)
e
Process 4 J. ° -
(0,0,0,1) (0,0,0,2) (0,0,0,3)

a Among others, we have here:
a ¢! kandV(c) <V (k)

o

a g6! landV(g) 8V (l),aswellas| 6! gandV (l) 8 V (0)

a V (I)and V (g) not comparable , | and g concurrent
Egtlﬁggsvsvﬁ?g#qlg " verteilte Systeme Distributed Systems (1/11) 210
6.4 Global State n

(Animated slide)

A Motivating Example

a Scenario: peer-to-peer application, processes send requests to
each other

Qo

Question: when can the application terminate?

Qo

Wrong answer: when no process is processing a request
& reason: requests can still be on the way in messages!

Process 1 Process 2

Request
<

Other applications: distributed garbage collection, distributed
deadlock detection, ...

Qo

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 211

6.4 Global State ... "

a How can we determine the overall state of a distributed process
system?
& na'vely: union of the states of all processes (wrong!)
a Two aspects have to be considered:
& messages that are still in transit
a must be included in the state
a lack of global time
a a global state at time t cannot be de ned!
a process states always refer to local (and thus different)
times
a question: condition on local times?) consistent cuts
Egtlﬁggsvsvﬁ?g#qlg " verteilte Systeme Distributed Systems (1/11) 212
6.4 Global State ... n
(Animated slide)
Consistent Cuts
a Objective: build a meaningful global state from local states (which
are not determined simultaneously)
a Processes are modeled by sequences of events:
Process 1——e ® /’ \\ *—>
Process 2 7(—0 (< \ ° -
Process 3 o o o < \o —® -
Consistent cuts Inconsistent cut
a Cut: consider a pre x of the event sequence in each process
a Consistent cut :

a if the cut contains the reception of a message, it also contains
the sending of this message

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 213

6.4 Global State ... "

The Snapshot Algorithm of Chandy and Lamport

a Determines online a “snapshot” of the global state
a i.e.: a consistent cut

Qo

The global state consists of:

o

a the local states of all processes

a the status of all communication connections
a i.e. the messages in transmission

Qo

Assumptions / properties:

Qo

reliable message channels with sequence retention
process graph is strongly connected

each process can trigger a snapshot at any time
the processes are not blocked during the algorithm

Qo Qo Qo

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 214

Notes for slide 214:

A graph is strongly connected if there is a path from each node to each other node.
This property is necessary for each process to learn that a snapshot has been initi-
ated.

214-1

6.4 Global State ... "

The Snapshot Algorithm of Chandy and Lamport ...

4 When a process wants to initiate a snapshot:

o

a process rst saves its local state

a then it sends a marker message over each outgoing channel

Qo

When a process receives a marker message:

a if it has not yet saved its local state:
a it saves its local state

o

a and sends a marker over each outgoing channel
a else:

a for the channel where the marker was received, it saves all
messages that have been received since the local state
was saved

l.e., it records the status of the channel

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

a

Distributed Systems (1/11)

215

d

6.4 Global State ...

The Snapshot Algorithm of Chandy and Lamport ...

a The algorithm terminates when each process has received a
marker message on each channel

o

a the determined consistent section is then (initially) stored in a
distributed way

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

216

6.4 Global State ... "

(Animated slide)

Example for the algorithm
of Chandy/Lamport

1. P1 initiates a snapshot, saves its state, and sends markers
2. P3 receives a marker from P1, saves its state, and sends markers
3. P2 receives and processes a
P2 receives the marker from P1, saves its state, and sends markers
4. P1, P2, P3 save the incoming messages, until all markers are received

Egtlﬁggsvsvyi/i?é%lg " verteilte Systeme Distributed Systems (1/11) 217
6.4 Global State ... "

(Animated slide)

Sequence in the Example and Selected Cut

displayed initial state

consistent cut determined by the algorithm

Qo

The cut consists of the local states of P1, P2, P3 and the
messages b, ¢, d, e

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 218

Distributed Systems

Summer Term 2020

7 Coordination

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 219

7 Coordination ... n

Contents

g_)o

Election algorithms

Mutual exclusion

Qo

Qo

Group communication (multicast)

Transactions

Qo

Literature

Qo

Tanenbaum, van Steen: Kap. 5.4-5.6
Colouris, Dollimore, Kindberg: Kap. 11, 12
Stallings: Kap 14.3

Qo Qo

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 220

7 Coordination ... "

7.1 Election Algorithms

a

Qo

Qo

[Tanenbaum/Steen, 5.4]

In many distributed algorithms one arbitrary process must play an
exceptional role

& e.g. central coordinator, initiator, ...

Question: how to choose this process unambiguously?
& processes must be distinguishable, e.g. via a unique ID.
a4 then select e.g. the process with the highest ID

Prerequisites / requirements:

a election can be initiated by multiple processes simultaneously
a e.g. after failure or recovery of a process

& after the election all processes must have the same result

& each process knows the IDs of all other processes, but does
not know whether they are running or not

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 221

7.1 Election Algorithms ... n

The Bully Algorithm

a

Qo

Qo

A process P holds an election as follows:

& P sends an ELECTION message to all processes with a larger
ID

& if none of the processes reacts, P wins the election
a if a process responds: P loses the election

When a process receives an ELECTION message:
& (message comes from a process with a lower ID)

a return an OK message
a hold an election of your own

At some point, there is only one process left
& this wins the election and sends the result to all others

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 222

7.1 Election Algorithms ... "

(Animated slide)

Bully Algorithm: Example

Process 4 holds an election

Processes 5 and 6 reply,
Process 4 terminates its election

Processes 5 and 6 simultaneously
hold an election

Process 6 replies to 5
Process 5 terminates its election

Noone replied to the election of
Previous Coordinator process 6, thus, this process wins

has crashed the election and communicates the
result to all others

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 223

7.1 Election Algorithms ... n

A Ring Algorithm

a Assumption: processes form a logical ring, i.e. each process
knows its successors in the ring

Qo

Messages are sent along the ring as follows:

o

a a process tries to send the message to its direct successor

& if this process is not active, the message will be sent to the
next process in the ring, etc.

Qo

ELECTION messages contain a list of process IDs

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 224

7.1 Election Algorithms ...

A Ring Algorithm ...

a A process that initiates the election sends an ELECTION
message with its own ID along the ring

o

a When an ELECTION message is received by a process:

a ifits own ID is not in the list of IDs:
a append the own ID to the list
a continue sending message along the ring
a4 else (message came back to the initiator):
a determine highest ID in the list
a send this ID in a COORDINATOR message along the ring

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

7.1 Election Algorithms ...

Distributed Systems (1/11) 225

d

(Animated slide)

Ring Algorithm: Example

2] (3)12:3]

[2,3,4,5]
[5,6,0]
[5.6] ’/

38{’ no answer

Previous coordinator
has crashed

Processes 2 and 5 concurrently
initiate an election

Eventually both processes get
their ELECTION messages
back and send a
COORDINATOR message
(with identical contents!)

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

Distributed Systems (1/11) 226

7 Coordination ... "

7.2 Mutual Exclusion

a Here mainly: use / allocation of exclusive resources
a Requirements:
& safety: only one process can use the resource at any one time
a liveness: any process that requests the resource will
eventually get it
& fairness: access to resources in 'FIFO' order
a Solution approaches:
& centralized server
& distributed algorithm with Lamport clock
a token ring algorithm
Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 227
7.2 Mutual Exclusion ... n
Centralized server
a An special coordinator process manages the resource and a
gueue for waiting processes
& determined e.g. via an election algorithm
a Resource is requested by sending a message to the coordinator
a if resource is free: coordinator answers with OK
a otherwise: coordinator does not answer
a requesting process is blocked (waiting for reply)
a Resource is released by sending a message to the coordinator
a if processes wait: coordinator sends an OK to one of them
a Problem: processes cannot detect failure of the coordinator

& this could be done using negative replies and polling

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 228

7.2 Mutual Exclusion ... "

A Distributed Algorithm (Ricart / Agrawala)
a ldea: a process that wants to have a resource asks all other
processes for their OK
& a process replies with OK, if

a it does not want the resource, or
a it wants the resource, but the other process has requested

it “earlier”
a Requires total order of request events
& order must be consistent with causality
& realizable e.g. via a time stamp (Lamport time, process ID)
with lexicographic order
a in the example of slide 207 this results in the event order:
b;c;a;e;g;d;j;fl; hyis Kk
Egtlﬁggsvsvﬁ?g%lqlg ' verteilte Systeme Distributed Systems (1/11) 229
7.2 Mutual Exclusion ... n

A Distributed Algorithm (Ricart / Agrawala) ...
a To request a resource, a process sends the following message to
all other processes:
& resource ID
a time stamp T of the request
a pair: (current Lamport time, own process ID)

(the message must be delivered reliably)

Qo

The process then waits until it receives an OK message from all
other processes

Qo

After that it can use the resource (exclusively)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 230

7.2 Mutual Exclusion ...

A Distributed Algorithm (Ricart / Agrawala) ...

a Each process responds to request messages as follows:

& resource is not used and not requested by the process:

a return OK message
a resource is used by the process:

o

a do not send a reply
a put the request in a queue
& Resource id not used, but requested by the process:
a if T (incoming message) < T (own request):
& return OK message
a or else:
& do not send a reply
4 put the request in a queue

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

7.2 Mutual Exclusion ...

231

A Distributed Algorithm (Ricart / Agrawala) ...

a When a process releases the resource:
& send an OK message to all processes in the queue
a delete the queue

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

232

7.2 Mutual Exclusion ... "

(Animated slide)

Example for the Algorithm of Ricart / Agrawala

P1 owns 1. P1 sends request to all others

the resource 2. P3 sends request to all others

3. P2 sends OK to P1 and P3,
since it doesn,t want the resource

4. P1 doesn't send an OK to P3,
since (12,3) > (8,1).
P1 adds P3 to its queue
5. P3 sends OK to P1, since
(8,1) < (12,3)
_-, 6. P1received all OKs
and uses the resource

Both P1 and P3 want 7. P1 releases the resource
the resource and sends an OK to P3
Roland Wismiller Distributed Systems (1/11) 233

Betriebssysteme / verteilte Systeme

Notes for slide 233:

With time stamps that are not consistent with the causality, the following sequence
would be possible:

EI Process wants
the resource

@, Process got
= one OK

Process got
® both OKs

Of the three processes, two (P2, P3) want to use the resource. P2 sends an OK to

P3 because it does not (yet) want the resource at this point. Before P3 also receives
the OK from P1, it receives the request from P2. Since (1,2) < (3,3), P3 will send an
OK to P2. P1 answers all requests immediately with OK, because it does not want the
resource. At the end both P2 and P3 get the resource!

To prevent this situation, P2 must select a time stamp that is greater than that of P3.
When using time stamps that are consistent with causality, this is the case, since the
sending of the request by P2 actually “happened before” the sending event in P3.

233-1

7.2 Mutual Exclusion ... "

A Token Ring Algorithm

a The processes form a logical ring
a Atoken circles in the ring
& authorization for (exclusive) use of the resource
a token is initially generated by one of the processes
a On arrival of the token: process checks whether it wants the
resource
a if so:
a use the resource
a after releasing the resource:
4 pass token to successor in the ring
a else:
a pass token immediately to successor in the ring
Retniabseysieme./ verteilte Systeme Distributed Systems (1/11) 234
7.2 Mutual Exclusion ... n

Comparison of algorithms

a

Qo

Centralized server:

& server is single point of failure and may be a performance
bottleneck

Qo

clients cannot distinguish (without additional measures)
between server failure and occupied resource

Qo

only little communication necessary

Distributed algorithm:
a failure of any node is problematic

Qo

any node can become a performance bottleneck

Qo

high communication effort
& just a proof that a distributed, symmetrical algorithm is possible

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 235

7.2 Mutual Exclusion ... "

Comparison of algorithms ...

a Token ring algorithm:

o

a problem: loss of the token (detection, re-creation)

o

a failure of nodes is problematic
a communication, even if resource is not used

Algorithm | Messages per | Delay before | Problems
allocation allocation
centralized | 3 2 server failure
distributed {2(n 1) 2(n 1) failure of any process
tokenring |1::1 O::n 1 lost token,
failure of any process

Egtlﬁggsvsvﬁ?g%lqlg ' verteilte Systeme Distributed Systems (1/11) 236

7 Coordination ... n

7.3 Group Communication (Multicast) [Coulouris, 4.5, 11.4]

a Indistributed systems, communication with a group of processes
(multicast) is often also important, e.g. for:
a fault tolerance based on replicated services

service realized by group of servers
all servers receive and process the requests

Qo Qo

Qo

nding of services (especially discovery / name services)
a multicast is a possible approach for this

better performance through replicated data

a4 changes must be sent to all copies

sending event noti cations

a all subscribers receive the event

Qo

Qo

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 237

7.3 Group Communication (Multicast) ...

Questions / Problems

a

QJO

QJO

Addressing the recipients

& explicit list of all recipients

& addressing a process group
a static / dynamic groups

Reliability

a4 reasonable guarantees that messages will reach their
recipients

Order

a4 adequate guarantees as to the order in which multicast
messages arrive at the various recipients

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 238

7.3 Group Communication (Multicast) ... n

Reliability

a

Qo

Qo

Unreliable multicast

& some processes may not receive the message (e.g. due to
packet loss)

Reliable multicast :

a4 apart from network and process failures, the message is
delivered to all processes in the group

Atomic multicast

& the message is (under all circumstances) received either by alll
processes of the group or by none of them

& required if all processes in the group must be kept consistent
(e.g., operations on replicated data)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 239

7.3 Group Communication (Multicast) ... "

(Animated slide)

Order
a Unordered 1 2 3 4
& receiving order is unde ned q
and can be different in different D
processes q
v Y
a FIFO order 1 2 3 4
& messages from the same sender q

are received by all processes in

FIFO order NZ %

l.e. introduction of sequence
numbers local to the sender \

Qo

D)
<)

Egtlﬁggs\/s\/)}i?éwag " verteilte Systeme Distributed Systems (1/11) 240
7.3 Group Communication (Multicast) ... "
(Animated slide)
Order ...
a Causal order
& if message m Y can causally 1 2 3 4
dependonm (m ! m?9,thenall ¢
processes receive m before m?° D
& i.e. introduction of vector time q
stamps
v Y
a Total order 1 2 3 4
a all messages are received by all 1
processes in the same order D
a i.e. introduction of global d
seguence numbers
v Y
Egtlﬁggsvsv)ig{g%lg r/ verteilte Systeme Distributed Systems (1/11) 241

7 Coordination ... "

7.4 Transactions

a Combining a sequence of atomic actions into a single unit
& atomic actions: read, change, write data

a Example: seat reservation

Transaction

|

|

1 T 0

I Query listof : Mark seat as
: free seats . Choose a seat : reserved

NG M=

Atomic actions

o

a Used not only in database systems

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 242

7.4 Transactions ... n

Properties of Transactions: ACID

a Atomicity
& all-or-nothing principle: either all atomic actions are executed
(correctly) or none at all

Qo

Consistency

& atransaction always transfers a consistent state back to
consistent state

Qo

Isolation

a concurrent transactions do not affect each other; the result is
the same as with sequential execution

Qo

Durability

o

a at the (successful) end of the transaction all changes are
stored permanently

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 243

7.4 Transactions ... "

Atomicity

Commit
G‘n% l
— T Transaction

\AII changes are

stored permanently

n
G‘uﬂ
- Transaction
— ——
——

Rollback / All changes
are undone

Egtlﬁggsvsvyigg(r%lﬁlg " verteilte Systeme Distributed Systems (1/11) 244
7.4 Transactions ... n
Isolation

Two concurrent

) Permitted serializations
transactions

or

Xiy iz \ — —
) ' XEYEZ AEBEC

a The result of the concurrent transactions corresponds to one of
the two serializations

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 245

7.4 Transactions ...

Isolation Levels

a

Qo

Qo

Complete isolation of (database) transactions often is too
restrictive / too little performant

Therefore: SQL99 standard de nes four isolation levels

Goal: avoidance of unwanted phenomena

o

a dirty reads:

Qo

unrepeatable reads:

a transaction can read data of another
transaction before they have been committed

can see commited changes of other transactions

Qo

phantom reads:

when reading repeatedly, a transaction

when reading repeatedly, a transaction can
see that other transactions have added or deleted records

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

7.4 Transactions ...

Distributed Systems (1/11)

246

Isolation Level According to ANSI/ISO-SQL99

Qo

) Phenomenon Dirty Unrepeatable Phantom
Isolation Reads Reads Reads
level
Read Uncommitted possible possible possible
Read Committed not possible possible possible
Repeatable Read not possible | not possible possible
Serializable not possible | not possible | not possible

Serializable corresponds to complete isolation

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

247

7.4 Transactions ... "

Nested Transactions
a Within a transaction, several subtransactions take place

a Higher-level transaction can run successfully to completion, even
if subtransaction was terminated with an error

a Abort of the higher-level transaction results in aborting all
subtransactions
a Example: booking of ight and hotel
& booking of the ight should be maintained, even if hotel
booking (in the rst attempt) fails
a Nested transaction are supported by only a few transaction
services
Egtlﬁggsvsvﬁ?g%lqlg ' verteilte Systeme Distributed Systems (1/11) 248
7.4 Transactions ... n

Flat transaction

Book flight Book hote

Begin Abort

Nested transactions

Call subtransaction Call subtransaction Call subtransaction

Begin Commit
Book flight Book ho Book hotel
Begin Tentative Begin Abort Begin Tentative
commit commit

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 249

7.4 Transactions ... "

Distributed Transactions

Qo

So far: data is stored at exactly one location

Distributed transactions: data is stored distributed

Qo

Realization of transactions on the individual data resources
(databases) is no longer suf cient

Qo

a distributed transaction management becomes necessary

Qo

There is a generally accepted Open Group model for the
management of distributed transactions

o

a is implemented by most transaction services
& most important feature: 2-Phase-Commit

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 250

7.4 Transactions ... n

(Animated slide)

Model for Managing Distributed Transactions

Management of distributed transaction
across resource boundaries

/
b@/ Transaktion manager
I, (T™)
o A @
Application -rolibac join prepare™~commit
I !

%\ Resource manager
(Rw
N

Transaction management within the
individual data resources

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 251

Notes for slide 251:
Sequence of a distributed transaction in the model:

1. Application requests start of a new transaction.
Transaction manager (TM) internally initializes a new transaction.

2. Transaction is active. Application can access resources.

3. Every resource manager (RM) used by the application registeres for the
transaction at the TM.

4. Application requires committing or aborting the transaction.

5. TM calls on RM to commit the changes: 2-phase commit.

251-1

7.4 Transactions ... "

2-Phase Commit

a Phase 1 (voting phase)

& TM asks all involved RM, if the commit would be successful
(“prepare™)
& each RM that answers “yes” prepares for the commit

Qo

Phase 2 (nalization)
a if all RMs answered with “yes”:

a4 TM sends commit command to all RMs
a RM ultimately commits the data and sends an
acknowlegement to TM
a else:
a TM sends an abort command to all RMs

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 252

Notes for slide 252:

When an RM crashes after the prepare, it asks the TM how the transaction turned out.
The TM still has this information because it didn't get all the ACKSs.

252-1

Distributed Systems

Summer Term 2020

8 Replication and Consistency

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 253

8 Replication and Consistency ... "

Contents

Qo Qo Qo Qo

Qo

Introduction, motivation
Data-centered consistency models
Client-centered consistency models
Distribution protocols

Consistency protocols

Literature

a

Tanenbaum, van Steen: Kap. 6

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 254

8 Replication and Consistency ... n

8.1 Introduction and Motivation

a

Qo

Replication : several (identical) copies of data objects are stored
in the distributed system

& processes can access an arbitrary copy

Reasons for the replication:
& increase in availability and reliability
a if a replica is not available, use another one
a reading multiple replicas with majority vote
a increase in read performance

a for large systems: concurrent read access can be serviced
by different replicas

a with systems spread over a large area: access request is
sent to a replica in the vicinity

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 255

8.1

Introduction and Motivation ... "

Central Problem of Replication: Consistency

a

a

Qo

Qo

When data is changed, all replicas must be kept consistent
Simplest option: all updates are done via totally ordered atomic
multicast
a high overhead when frequent updates occur
a in some replicas these may actually never be read
a totally ordered atomic multicast is very expensive with many /
widely dispersed replicas

Strict consistency maintenance of replicas always deteriorates
performance and scalability

Solution: weakened consistency requirements
a often only very weak demands, e.g. News, Web, ...

8.1

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 256

Introduction and Motivation ... n

Consistency Models

a

Qo

Qo

Qo

A consistency model determines the order in which the write
operations (updates) of the processes are “seen” by the other
processes

Intuitive expectation: a read operation always returns the result of
the last write operation (strict consistency)
& problem: there is no global time
a pointless to speak of the “last” write operation
& therefore: other consistency models necessary

Data-centric consistency models : view of the data storage

Client-centric consistency models : view of one process
& assumption: (essentially) no update by multiple processes

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 257

8 Replication and Consistency ... "

8.2 Data Centric Consistency Models

4 Model of a distributed data store:

(Client) (Client) (Client)
Process Process Process _
Write and

/ read accesset

—
Local copy
I I I

Distributed data storage

o

a logical, shared data memory
a4 physically distributed and replicated across multiple nodes

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 258

8.2 Data Centric Consistency Models ... n

Sequential Consistency

a A data store is sequentially consistent if the result of each
program execution is as if:

a4 the (read/write) operations of all processes are executed in a
(random) sequential order,

& in which the operations of each individual process appear in
the order speci ed by the program.

a l.e. the execution of the o
: t the individual Pl P2 Pn[Operations in
operations of the Inaividua /Program order
processes can be o,
interleaved arbitraril ¢ b Switch can be
y T shifted arbitrari
& Independent of time or after each
clocks Data store operation
a All processes see the accesses in the same order

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 259

8.2 Data Centric Consistency Models ...

(Animated slide)

Sequential Consistency: Examples

Allowed sequence: Forbidden Sequence:

P1: W(x)a P1: W(x)a

P2: W(x)b P2: W(x)b

P3: R(x)b R(x)a P3: R(x)b R(x)a
P4: R(x)b R(x)a P4: R(x)a R(x)b
a Notation:

o

& W(x)a : thevalue 'a'is written into the variable X'
& R(X)a : variable 'x' will be read, result is ‘a’

a A possible sequential order of the left sequence:
a W, (x)b, R3(x)b, R4(X)b, W1 (X)a, Rz(X)a, Rs(X)a
Egtlﬁggsvsvyigg(r%lﬁlg " verteilte Systeme Distributed Systems (1/11) 260
8.2 Data Centric Consistency Models ... n

Linearizability

a

Qo Qo

Qo

Qo

Qo

Stronger than sequential consistency

Assumption: the nodes (processes) have synchronized clocks
& i.e. an approximation of a global time

Operations have time stamps based on these clocks

In comparison with sequential consistency additionally required:

a the sequential order of operations is consistent with their
timestamps

Complex implementation

Used for formal veri cation of concurrent algorithms

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 261

8.2 Data Centric Consistency Models ... "

Causal Consistency

o

a Weakening of sequential consistency

a (Only) write operations that are potentially causally dependent
must be visible to all processes in the same order

Causally, but not seq. consistent: Not causally consistent:

P1: W(x)a W(x)c P1: W(x)a

P2: R(x)aW(x)b P2: R(x)a W(x)b

P3: R(x)a R(x)c R(xX)b P3: R(x)b R(x)

P4: R(x)a R(x)b R(X)c P4: R(x)a R(x)
Egtlﬁggsvsvﬁgﬂlqlg r/ verteilte Systeme Distributed Systems (1/11) 262

8.2 Data Centric Consistency Models ... n

Weak Consistency

a In practice: access to shared resources is coordinated via
synchronization variables (SV)

a Then: weaker consistency requirements are suf cient:

accesses to SVs are sequentially consistent

an operation on a SV is not allowed until all previous write
accesses to data have been completed everywhere

no operation on data is allowed before all previous operations
on SVs have been completed

Qo Qo

Qo

Allowed event sequence: Invalid event sequence:

P1: W(x)a W(x)b S P1: W(x)a W(X)bS

P2: S R(x)b _

P3: Rx)a RS P2 S Ra
P4. R(xX)b R(x)aS

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 263

8.2 Data Centric Consistency Models ... "

Release Consistency (Freigabe-Konsistenz)

a Idea as with weak consistency, but distinction between acquire
and release operations (mutual exclusion!)

o

a before an operation on the data is performed all acquire-
operations of the process must be completed

Qo

before the end of a release operation all operations of the
process on the data must be completed

Qo

acquire / release operations of a process are seen everywhere
in the same order

Allowed event sequence:
P1. acq(L) W(x)a W(x)b rel(L)

P2: acg(L) R(xX)b rel(L)
P3: R(x)a

Egtlﬁggsvsvﬁ?g#qlg ' verteilte Systeme Distributed Systems (1/11) 264
8.2 Data Centric Consistency Models ... n

Comparison of models

Strict Absolute time sequence of all shared accesses
(physically not useful!)

Linearization | All processes see all accesses in the same order.
Accesses are sorted by a (non-unique) global
timestamp.

Sequential | All processes see all accesses in the same order.
Accesses sre not sorted by time.

Causal All processes see causally linked accesses in the
same order.

Weak Data is only reliably consistent after a synchro-
nization has been performed.

Release Data is made consistent when leaving the critical

region.

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 265

8 Replication and Consistency ... "

8.3 Client Centric Consistency Models

a In practice:

& clients are usually independent from each other
& changes to the data are mostly rare
& because of partitioning often no write/write con icts

a e.g., DNS, WWW (Caches), ...
Eventual consistency : all replicas will eventually become
consistent if no updates take place for a long time
Problem if a client changes the replica it is accessing

a4 updates may not have arrived there yet
& client detects inconsistent behavior

Solution: client-centric consistency models

& guarantee consistency for an individual client
& but not for concurrent accesses by multiple clients

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 266

Q_)o

Q_)o

Qo

8.3 Client Centric Consistency Models ... "

lllustration of the problem

The client moves to another location
and (transparently) creates a connectior
to another replica

Replicas must retain
client centric consistency

Wide area network

Distributed’and
replicated
data base

= Read and write
o operations
Mobile computer

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 267

8.3 Client Centric Consistency Models ... "

Monotonic Read

a Example for a client centric consistency model
& more: see Tanenbaum / van Steen, Ch. 6.3

Qo

Rule: When a process reads the value of a variable x, every
subsequent read operation for x returns the same or a more
recent value

a Example: access to a mailbox at different locations

With monotonic read Without monotonic read:
L1: WS(¥) R(x) L1: WS(%) R(x)
L2: WS(x x) R0e) L2: WS(»%) R(%) WS(x %
L1/L2: local copies Write operations to X in{
WS(...) set of write operations are now executed on x in L2
Roland Wismdller Distributed Systems (1/11) 268

Betriebssysteme / verteilte Systeme

Notes for slide 268:

Tanenbaum and van Steen de ne three more client centric cons istency models:

& Monotonic write: A write operation of a process on a variable x is completed be-
fore a subsequent write operation on x can be performed by the same process.

Read Your Writes: The result of a write operation of a process on a variable x will
always be visible for a subsequent read operation on x by the same process.

Qo

Writes Follow Reads: A write operation of a process to a variable x that follows a
previous read operation to X by the same process is guaranteed to occur at the
same or a more recent value of x.

Qo

268-1

8 Replication and Consistency ... "

8.4 Distribution Protocols

a Question: where, when and by whom are replicas placed?
& permanent replicas
a server initiated replicas
a client initiated replicas

Qo

Question: how are updates distributed (regardless of consistency
protocol, + 8.5)7?

a sending invalidations, status or operations
& pull or push protocols
& unicast or multicast

Egtlﬁggsvsvyigg(r%lﬁlg " verteilte Systeme Distributed Systems (1/11) 269
8.4 Distribution Protocoils ... n

Placing the Replicas

—» Server initiated
replicas

--» Client initiated
replicas

Permanent
replicas

Clients

a All three types can occur simultaneously

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 270

8.4 Distribution Protocols ...

Permanent Replicas

o

a

Initial set of replicas, static, mostly small

a Examples:

& replicated web site (transparent to client)

o

a mirroring (Mirroring, client deliberately chooses a replica)

Server Initiated Replicas

a Server creates additional replicas on demand (Push-Cache)
a e.g., for web hosting services
a Dif cult: deciding when and where replicas will be created
& usually access counter for each le, additional informatio n
about the origin of the requests (! nearest server)
Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 271
8.4 Distribution Protocols ... n

Client initiated Replicas

Qo Qo Qo

Qo

Qo

Qo

Other term: Client Cache
Client cache locally stores (frequently) used data
Goal: improving access time

Management of the cache is completely left to the client
a server doesn't care about consistency

Data is usually kept in the cache for a limited time only

a prevents use of extremely obsolete data

Cache usually placed on client machines, or shared cache for
multiple clients in their proximity

a e.g., Web proxy caches

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 272

8.4 Distribution Protocols ... "

Forwarding Updates: What's Being Sent?

a The new value of the data object
& good with high read/update ratio

Qo

The update operation (active replication)
& saves bandwidth (operation with parameters is usually small)

o

a but more computing power required

Qo

Just a noti cation (invalidation protocols)

& noti cation makes the copy of the data object invalid
& on next access a new copy will be requested

& requires very little network bandwidth

& good at low read/update ratio

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 273

8.4 Distribution Protocols ... n

Pull and Push Protocols

a Push: updates are distributed on the initiative of the server that
made the change

replicas don't have to request updates

common in permanent and server-initiated replicas

when a relatively high degree of consistency is required

Qo Qo Qo

a at high read/update ratio
a problem: server must know all replicas
a Pull: replicas actively request data updates
& common with client caches
a at low read/update ratio
& disadvantage: higher response time for cache access
a Leases: mixed form: rst push for some time, then pull later

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 274

8.4 Distribution Protocols ...

d

Unicast vs. Multicast

a

a

Qo

Qo

Unicast: send update individually to each replica server

Multicast: send one message and leave the distribution to the

network (e.g. IP multicast)

a often much more ef cient
& especially in LANs: hardware broadcast possible

Multicast is useful for push protocols

Unicast is better with pull protocols
a only a single client/server requests an update

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

8 Replication and Consistency ...

275

d

8.5 Consistency Protocols

a

Qo

Qo

Describe how replica servers coordinate with each other to
Implement a speci ¢ consistency model

Here speci cally considered:

a consistency models that serialize operations globally
a e.g., sequential, weak and release consistency

Two basic approaches:
& primary-based (primarbasierte) protocols

a write operations are always performed on a special copy

(primary copy)
& replicated-write protocols

a write operations go to multiple copies

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

276

8.5 Consistency Protocols ... "

Primary-Based Protocols
a Read operations are possible on arbitrary (local) copies

a Write operations must be handled by the primary copy

o

a e.g., torealize a sequential consistency:

a the primary copy updates all other copies and waits for
acknowledgements, only then it replies to the client

a problem: performance

a Remote-write protocols
a the writer forwards the operation to a xed primary copy
a Local-write protocols
& writer must become primary copy before it can do the update
a i.e., the primary copy is migrated between servers
& good model also for mobile users
Retniabseysieme./ verteilte Systeme Distributed Systems (1/11) 277
8.5 Consistency Protocols ... "

(Animated slide)

Remote Write Protocol: Work ow (Sequential Consistency)

Client Client

write(x))| write ACK read(x)| val(x)
update ACK Data storage

update(x)

-

erte ACK update AC update ACK

Backup Primary Backup Backup
server server for x server server

(1) Write request is forwarded to primary server
(2) Primary server updates all backups and waits for acknowledgements
(3) Acknowledge the end of the write operation

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 278

8.5 Consistency Protocols ... ‘I

(Animated slide)

Local Write Protocol: Work ow (Release Consistency)

Client Client
request ac acq ACK
primary write(write ACKread(x

rel rel ACK
m J;
update(@

< _update(

<<
update AEK Update AC update ACK

Primary Backup Backup Backup
server for x server server server

g

val(x)

Data storage
update(x)

Xﬂ

(1) Acquire lock; Move primary copy to new server

(2) Acknowledge the end of the write operation

(3) Write operations are executed (only) on the local server

(4) New primary server updates backups and waits for acknowledgements

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 279

8.5 Consistency Protocaols ... "

Replicated Write Protocols
a Allow execution of write operations on (multiple) arbitrary replicas

a In the following, two approaches:
& active replication

update operations are passed on to all copies
requirement: globally unique sequence of operations
& using totally ordered multicast

4 0or via central sequencer process

& quorum-based protocols

a only a portion of the replicas needs to be modi ed
a however, also multiple copies need to be read

Qo

Qo

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 280

8.5 Consistency Protocols ... "

Problem With Replicated Object Calls
a What happens when a replicated object calls another?

Client replicates Object C receive

)

the method call B1 the same call three tim
%] \—__/ 7
)
s
____/
)
All replicas s B3

the same call ~—
Replicated object

a Solution: middelware that is aware of replication

a4 coordinator of B makes sure that only one call is sent to C and
its result is distributed to all replicas of B

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 281

8.5 Consistency Protocaols ... "

Quorum-based Protocols

a Clients need the permission of multiple servers for writing and for
reading

Qo

When writing: send the request to (at least) N copies
a their servers must agree to the change

a4 data gets a new version number when changed

a condition: Ny > N= 2 (N =total number of copies)

a prevents write/write con icts

Qo

When reading: send the request to (at least) N g copies
a client selects the latest version (highest version number)

a condition: Ng + N\ >N
a ensures that in any case the latest version is read

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 282

8.5 Consistency Protocols ... "

Quorum-based Protocols: Examples

Read quorum
/ d \
A BJ|IC D A B C|D A B C D
E F||G H E F G|H E|IF|I G H
[J| K L Il J K L I J K L
™~ Write quorum 7
NR=6 NW=7 NR=7 NW=6 NR=1 NW=12
correct Write/write conflicts correct
are possible
(Nw< N/2)
Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 283
8 Replication and Consistency ... n

8.6 Summary
a Replication due to availability and performance

a Problem: consistency of copies
& strictest model: sequential consistency

a waekenings: causal consistency, weak |, release
& client-centric consistency models

Implementation of replication and consistency:
& replication scheme: static, server initiated, client initiated

Qo

a distribution protocols

a type of update, push / pull, unicast / multicast
& consistency protocols

a primary based / replicated write protocols

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 284

Distributed Systems

Summer Term 2020

9 Distributed File Systems

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

9 Distributed File Systems ...

285

Contents

a General

a Case study: NFS

Literature

a Tanenbaum, van Steen: Ch. 10
a Colouris, Dollimore, Kindberg: Ch. 8

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

286

9 Distributed File Systems ... "

9.1 General

a

Qo

Qo

Qo

[Coulouris, 8.1-8.3]

Objective: support the sharing of information (les) in an intra net
& in the Internet: WWW

Allows applications to access remote les in the same way as
local les

& similar (or even better) performance and reliability

Allows operation of diskless nodes

Examples:
& NFS (standard in the UNIX area)
& AFS (goal: scalability), CIFS (Windows), CODA, xFS, ...

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 287

9.1 General ... n

Requirements

Qo

Qo Qo Qo

Qo

Qo Qo

Qo

Transparency: access, location, mobility, performance and scaling
transparency

Concurrent le updates (e.g., locks)
File replication (often: local caching)
Heterogeneity of hardware and operating system

Fault tolerance (especially in case of server failure)

a often: at-least-once semantics + idempotent operations
& advantageous: stateless server (easy reboot)

Consistency (+ 8)
Security (access control, authentication, encryption)
Ef ciency

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 288

9.1 General ...

Model Architecture of a Distributed File System

Client computer Server computer
T
Application, Applicatior Directory service
program program bl
Net- N
work
Client module Flat file service
i
RPC
interface

a Tasks of the client module:

& emulation of the le interface of the local OS
a if necessary caching of les or le sections

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 289

9.1 General ... n

Model Architecture of a Distributed File System ...

a

Qo

Flat le service:

& provides idempotent access operations to les

a e.g., read, write, create, remove, getAttributes, setAttributes
a4 no open / close, no implicit le pointer

a4 les are identi ed by UFIDs (Unique File IDs)
a (long) integer IDs, can serve as capabilities

Directory service:

& maps le or path names to UFIDs

a if necessary rst authenticates the client and veri es its
access rights

a services for creating, deleting and modifying directories

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 290

9 Distributed File Systems ...

9.2 Case Study: NFS

o

a

o

a

UNIX program

Introduced in 1984

Architecture:

Client com

by Sun

puter

Application

Applicatior
program

system ———1

a Open, OS independent protocol

Server computer

calls Virtual file system Net- Virtual file sygtel
! 3.] work T 3
N TONIX | [2] NFs V] NFS NFS UNIX
file 1S o] protocol file
system [O & lent server systen
Roland Wismdller Distributed Systems (1/11) 291

Betriebssysteme / verteilte Systeme

9.2 Case Study: NFS ...

d

Access Control and Authentication

a

Qo

Qo

Qo

Qo

Qo

NFS server is stateless (up to and including NFS3)

UFID (le handle): essentially just the le system ID and i-n ode

& not a capability

Thus, access rights are checked with each request

& by the RPC protocol

Authentication usually only via user and group 1D
a4 extremely insecure!

More possibilities in NFS3:

a Dif e-Hellman key exchange (insecure)

a Kerberos

NFS4: secure RPC (RPCSEC_GSS)

Roland Wismdiller)
Betriebssysteme / verteilte Systeme

Distributed Systems (1/11)

292

9.2 Case Study: NFS ... ‘I

Mount Service

a An NFS le system can be mounted in the local directory tree

Server 1 Client Server 2
/ (root) / (root) / (root)
PN —\
}q)rt vmunix usr USIQ
peoplﬁc remote _ nts
. Mmount mount T
bob jon jim ann joe

a Collaboration of mountcommand in the client with the mount
service of the NFS server

& on request, the mount service provides le handles of the ex-
ported directories (for name resolution)

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 293

Notes for slide 293:

A directory exported from an NFS server A may contain a subdirectory that this server
imports from another NFS server B . However, A is not be allowed to export this subdi-
rectory to its clients. A client importing the directory from A must therefore also import
the subdirectory from B .

293-1

9.2 Case Study: NFS ... "

Translation of Pathnames

a lteratively (NFS3): for each directory one request to NFS server
& necessary because path can cross mount points
a inef ciency is mitigated by client caching
Automounter
a Goal: set up an NFS mount only when it is accessed
& better fault tolerance, load balancing is possible
a Automounter is local NFS server
a thereby it sees the lookup()-requests of the client
a On request: set up the NFS mount and create a symbolic link to
the mount point
a After prolonged inactivity: release the mount
Egtlﬁggsvsvﬁ?g%lqlg ' verteilte Systeme Distributed Systems (1/11) 294
9.2 Case Study: NFS ... |_I
Server Caching
a Traditional le caching in UNIX:
& buffer in main memory for most recently used disk blocks
a4 read ahead: sequential blocks are loaded into cache
beforehand
& delayed write: modi ed blocks only written back when space is
needed; additionally every 30s by sync
a Server caching in NFS: two modes

& write through: write requests are executed in the server cache
and immediately also on disk

a advantage: no data loss in case of server crash

a delayed write: modi ed data will remain in the cache until a
commit operation is executed (i.e. le is closed)

a advantage: better performance if many write operations

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 295

9.2 Case Study: NFS ... "

Client Caching

a

Qo

Qo

NFS client buffers the results of (among other things) read / write
and lookup operations in a local cache

a leads to consistency issues, since now multiple copies
Client is responsible for maintaining consistency

Timeliness of the cache entry is checked with each access

o

a for that: compare whether the modi cation timestamp in the
cache matches the modi cation timestamp on the server

Qo

in case of negative validation: cache entry is deleted

Qo

if validation is successful: cache entry is considered current for
a certain time (3 - 30 s) without further checks

a i.e. changes only become visible after a few seconds
a compromise between consistency and ef ciency

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 296

9.2 Case Study: NFS ... |_I

Client Caching ...

a

Qo

Qo

Treatment of write operations:
& le block is marked as dirty in the cache
& marked blocks are sent asynchronously to the server:

a when closing the le
a4 at a sync operation on client machine
a possibly more often by block-input/output (bio)-demons

Bio-demons realize asynchronous operations for read ahead and
delayed write

a for performance optimization

NFS does not guarantee real consistency of client caches

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 297

Distributed Systems

Summer Term 2020

10 Distributed Shared Memory

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

10 Distributed Shared Memory ...

298

Contents

a Introduction

a Design alternatives

Literature

a Colouris, Dollimore, Kindberg: Kap. 16.1-16.3

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

299

10 Distributed Shared Memory ...

a

Qo

Q_)o

Goal: shared memory in distributed systems

Basic technique considered here:

page-based memory management on the nodes
& on demand: loading pages over the network

o

Qo

Differentiation:

a if necessary replication of pages to increase performance

Hardware DSM: NUMA Shared Virtual Memory Middleware
Computer 1 Computer 2 Compuortiputer 2 Computaoripute
Applicai | Applica; Applicaj | Applica; Applicai | Applica;

tion tion tion tion ' '
Runtim¢ | Runtime Runtime¢ | Runtime Runtimé | Runtime
system system system system system system
Operating [Operatin 5 eratin 5 eratin Operating [Operatin
stem g sIO stem J srilstem J sg/stem g srilstem g srilstem J
HardwaHe HardwaHe Hardwarne |Hardware Hardware |Hardware

Roland Wismdiller

Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

10 Distributed Shared Memory ...

300

d

Design alternatives

a

Qo

Structure of the shared memory:
& byte-oriented (distributed shared memory pages)
& object-oriented (distributed shared objects)
a e.g., Orca
& immutable data (distributed shared container)

a operations: read, add, remove
a e.g., Linda Tuple Space, JavaSpaces

Granularity (for page-based methods):
& when changing a byte: transmission of entire page

o

a with large pages: more ef cient communication, less
administrative effort, more false sharing

Roland Wismdiller

Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

301

10 Distributed Shared Memory ... "

Design alternatives ...

a

a

Consistency model: mostly sequential or release consistency

Consistency protocol: usually local write protocol
& i.e., memory page migrated to accessing process

Qo

with or without replication for read accesses
a client initiated replication, i.e., reader requests copy

Qo

usually only one writer per page
mostly invalidation protocols (with push model)

update protocols only if write accesses can be buffered (e.g.
with release consistency)

Qo

Qo

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 302

Notes for slide 302:

If write accesses cannot be buffered, we would not only have to send a multicast mes-
sage for each write access, which would be expensive, but we would also have to be
able to detect each individual write access. To do this, we can proceed as follows:

a

Qo

Qo

Qo

Qo

The relevant page is write-protected.
A write access triggers a page falut; the OS then gains control.

In order for the process to execute the access afterwards, the write protection
must be disabled (i.e. the page is given write access).

However, in order to be able to detect subsequent write accesses, the OS must
switch the write protection on again immediately after the access.

This requires a trace mode (usually available) in the processor that interrupts the
process immediately after executing the next instruction.

However, this procedure is very expensive.

If write accesses can be buffered, at most the rst write acce ss must be detected. It
IS not necessary to reactivate write protection using trace mode. In addition, fewer
updates have to be sent.

302-1

10 Distributed Shared Memory ... "

Design alternatives ...

a Management of copies

o

a mostly: at any time either multiple readers or one writer
& each page has an owner

o

a writer or one of the readers (last writer)

o

a manages a list of processes with copies of the page
a before write access: process requests current copy

Qo

Finding the owner of a page:
& central manager
a manages owners, forwards requests

& xed distribution
a xed mapping: page ! manager

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 303

Notes for slide 303 (Management of copies):
Notation:

a owner (S) =ownerof page S

a copyset (S) = set of nodes that have copies of S

When a read request is made to a page S by a process P, the following happens if P
does not have a copy of S:

Qo

the MMU generates a page fault

the OS requests a read copy of S from owner (S)

Qo

Qo

if the page S is writable at owner (S): remove write permissions

Qo

owner (S) sends S to P's node

Qo

copyset (S) :=copyset (S) [f Pg

if the page S arrives at P 's node, the OS sets the page to not writable and lets P
repeat the aborted access

Qo

303-1

When a process P requests to write to a page S, the following happens if P does not
have a writable copy of S:

Qo

the MMU generates an exception (page fault or protection violation)

Qo

the OS is requesting a writable copy of S from owner (S)

Qo

owner (S) then invalidates all copies of the page stored on nodes in copyset (S)
and sends S to P 's node

Qo

owner (S) :=P,copyset (S) :=fPg

Qo

if the page S arrives at P 's node, the OS sets the page to writeable and lets P
repeat the aborted access

303-2

10 Distributed Shared Memory ... "

Design alternatives ...

a Finding the owner of a page ...:
& multicast instead of manager
a problem: concurrent requests
a solution: totally ordered multicast, vector time stamps
dynamically distributed manager
every process knows a likely owner
this node forwards the request if necessary
the likely owner is updated,
& when a process transfers the ownership property
4 upon receipt of an invalidation message
& upon receipt of a requested page
& when a request is forwarded (to the requestor)

Qo
Qo Qo

Q_)o

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 304

Notes for slide 304 (concurrent requests):

The following situation may occur, for example:

o

Qo

Qo

Qo

Qo

node N1 and N2 concurrently request the same page, the owner is O.

A the request from N1 goes to N2 and O (among others), the request from N2
goes to N1 and O (among others).

O is sending the page to N1.

So N1 would have to process N2's request, but not before he actually has the
page. l.e., N1 would have to buffer the request.

On the other hand, N2 should ignore the request from N1, since it was already
answered by O.

But for N1 and N2, the situation is completely the same when the requests arrive,
so how are they supposed to decide what to do?

304-0

Notes for slide 304 (dynamically distributed manager):

Rationales for updating the probable owner:

a

Qo

Qo

Qo

when a process A transfers the ownership to process B:
then B is the new owner of the page; A updates its reference.

if process A receives an invalidation message from process B:
then B must be the owner; A updates its reference.

when process A gets a requested page from process B:
then B must be the owner; A updates its reference.

when process A forwards a request from process B for a page it does not own:
then A updates its reference to process B, since it is likely (if it is a write request,
even certain) that process B will soon become the owner.

304-1

Example of updating the probable owner:

Initial situation:

p
(B) (© (D (B
Owner
\ J
A writes A reads
4 N\ (N\
® © o 06|/ © o .6

Owner

@ Owner @
. J

305-1

10 Distributed Shared Memory ... n

Design alternatives ...
a Problems: e.g., thrashing, especially due to false sharing
& simple remedy:
a a page can be migrated again only after a certain period of
time
& TreadMarks: multiple writer protocol
a release consistency; when released, only the changed
parts of the page are transferred

changes are then “merged”
in case of con icts: result is non-deterministic

Q_)o

Q_)o

306

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

Distributed Systems

Summer Term 2020

11 Fault Tolerance

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

11 Fault Tolerance ...

307

Contents

Introduction

Qo

Process elasticity

Qo

Reliable communication

Qo

Qo

Recovery

Literature

a Tanenbaum, van Steen: Ch. 7

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

308

11.1 Introduction "

Concepts

a

a

o

Qo

Qo

Failure : external incorrect behavior (system no longer keeps its
promises)

Error : (unobserved) incorrect internal state

Fault: physical defect (in HW or SW) causing the error
a4 fault can be transient, periodic or permanent

Fault tolerance : system does not fail despite a fault

Requirement for reliable systems:

a availability : p(system is working at time t)

a reliability : p(system is working in time interval t)
a safety : no major damage if system fails

a maintainability : effort for “repair” after a failure

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 309

Notes for slide 309:

Note the subtle difference between availability and reliability:

a

Qo

A system that fails every 10 minutes for one millisecond is highly available
(99.998%), but very unreliable.

A system that never fails but must be serviced once a year for 2 weeks is highly
reliable, but has an availability of only 96%.

309-1

11.1 Introduction ... "

Failure models

Crash failure Server halts

Omission failure Server is not responding to requests
Receive omission | Server doesn't receive incoming requests
Send omission Server doesn't send messages

Timing failure Response time is outside the speci cation
Response failure Server's response is incorrect
Value failure Only the value of the answer is wrong
State transition f. | Incorrect control ow in server
Byzantine failure Random answers at arbitrary time

a Further distinction: can the client detect the failure or not?

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 310

Notes for slide 310:

The term failure ist used here, because we are talking about a misbehavior of a server
process that is actually visible to a client.

Since a distributed system as a whole conistst of several clients and servers, fault tol-
erance also includes the tolerance against failures in a part of the system (e.g., the
server). Or, in other words: a failure of a system component (in the sense, that another
component will notice the misbehavior) should not lead to a failure of the complete
(distributed) system.

310-1

11.1 Introduction ... "

Failure masking through redundancy
a Fault tolerant system must hide faults from other processes

a Most important technique: redundancy
& information redundancy : additional “check bits” (e.g., CRC)

o]

a time redundancy : repetition of faulty actions

& physical redundancy : important components are provided
multiple times

a Example: TMR, triple modular redundancy
& components are replicated three times
& majority decision for the results
& protects against failure of a replicated component
Egtlﬁggsvsvﬁgﬂlqlg r/ verteilte Systeme Distributed Systems (1/11) 311
11.1 Introduction ... n
(Animated slide)
Example for TMR
Without redundancy
() (2 ()
_/ _/ _/
With TMR

Roland Wismdiller I
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 312

11.2 Process Elasticity "

Objective: Protection Against Process Failure

a By replicating processes in groups
& message to the group is received by all members
a usually with totally ordered multicast

Qo

Questions:

a organization of the groups?
a at (symmetrical) vs. hierarchical (central coordinator)
a group administration, synchronous join/ exit

& necessary number of replicas?

a Kk fault tolerant : failure of k processes can be tolerated
a for silent failures: k +1 Processes
a for Byzantine failures: 2k + 1 processes

& agreement in faulty systems?

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 313

11.2 Process Elasticity ... n

Agreement in faulty systems

a Agreement is impossible with unreliable communication
& two army problem

a Agreement of faulty processes with reliable communication
& Byzantine agreement problem (byzantinische Generale)

o

a agreement only possible if > % of the processes work correctly

1. Send information 2. Received 3. Send received information
G 9 information to all other processes
lgets: 2gets: 4gets:
1 1: (1, 2,%x,4) from 1: @,2,x,4(1,2,x,4
X
2:(1,2,y,4) from2(@1,2,vy,4) 1,2,y.4

from 3:(a, b, ¢, d)(e, f, g, h) (i, j, k, I)

B, (4) 41,2724 froma(l,2 2,412 2,4)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 314

Notes for slide 314:

In the two-army problem, two parts of an army must agree on the time for an attack,
since they can only win together over the other army:
General A
-

Bluel
300 men

General B
E

Blue2
300 men

Generals A and B can only communicate via messengers that can be intercepted, i.e.
may not arrive.

a If A suggests an attack time, he doesn't know whether B has received this mes-
sage. So he doesn't know if B is attacking and therefore won't attack.

Qo

Even if B returns an acknowledgement, he doesn't know if A has received it. So
he doesn't know if A is attacking and therefore won't attack.

Qo

Even if A con rms the con rmation again, he does not know whet her B has re-
ceived this con rmation. So he doesn't know if B attacks and t herefore won't at-
tack.

Qo

314-1

11.3 Reliable Communication n

Objective: Protection Against Communication Failures

a Point-to-point communication (+ RN_I)
a TCP masks omission failures, but not crash failures

Qo

Client/server communication (+ 2.1)

& possible failures:

server not found

lost request

server crash while processing the request
lost reply

client crash after sending the request

Qo Qo Qo Qo

Q_)c

Qo

Group communication (+ 7.3)

Qo

Distributed commit (+ 7.4)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11) 315

11.4 Recovery "

Objective: System Recovery After an Error

a

o

Qo

Forward error recovery: go to a correct new state

Backward error recovery: go to a correct earlier state
a i.e. reset to a consistent cut
& regular backup to stable storage (checkpointing)

Independent checkpointing
& processes save their state independently of each other
& problem: domino effect

Initial state Checkpoint
P1 —{ = = = -
1 3 5
2 4 6 Error
P2 — o ® o ——
Roland Wismaller i Distributed Systems (1/11 316
Betriebssysteme / verteilte Systeme Y (1/11)

Notes for slide 316:

a

Qo

Regarding forward and backward error recovery, respectively:

Example: Reliable communication in computer networks: The retransmission of

a faulty frame is a backward error recovery, because in the end one resets to the
state in which the frame was not yet sent. The use of an error correcting code is a
forward error recovery.

Regarding the domino effect:

If P2 crashes in the example, it can be reset to checkpoint 6 (CP6). However, the
cut resulting from the current state of P1 and CP6 is not consistent (because of
the last message). Therefore, P1 must also be reset (to CP5). However, the cut
(CP5, CP6) is also not consistent (because of the penultimate message). There-
fore an earlier checkpoint must be used for P2 (CP4). The cut (CP5, CP4) is also
inconsistent, so that the reset continues until the initial state is nally reached.

316-1

11.4 Recovery ... "

a Coordinated checkpoints

o

a Chandy/Lamport algorithm (+ 6.4

a alternatively: blocking 2 phase protocol
& problem: requires to reset all processes

a Local checkpoints with message logging

a goal: restore the crashed process to a state consistent with
the current state of the other processes

a reset to last checkpoint and restore the received messages

P -
ml Crash Restore m1
Q—e X--=-=-=-
Check- m2 3 2/
point M M m Dupllcate
R
Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 317

Notes for slide 317:

If Q crashes, it is reset to the checkpoint. The recorded messages m1 and m2 can then
be replayed. Q then sends the message m3 again (assuming that the process behaves
deterministically!). R recognizes this m3 as a duplicate and discards the message.
After that the whole system is in a consistent state again.

317-1

Distributed Systems

Summer Term 2020

12 Summary, Important Topics

Egtlﬁggsvsvﬁ?g%lqlg " verteilte Systeme Distributed Systems (1/11) 318
12 Summary, Important Topics ... n

1. Introduction
a De nition of a distributed system

a Features / challenges of distributed systems
a Architecture models: client/server, n-tier

2. Middleware

a Tasks of the middleware
a Communication-oriented and application-oriented middleware

a Implementation of remote calls (proxy pattern)
3. Distributed Programming with Java RMI
a Approach to create an RMI application

a Programming of server and client

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

319

12

Summary, Important Topics ...

4. Name Services

5. Process Management

a

Graph partitioning, list scheduling, code migration

6. Time and Global State

Qo Qo Qo

Q_)o

Synchronization of physical clocks
Lamport's happended-before relation (causality relation
Lamport and vector clocks

Consistent cuts, Chandy/Lamport algorithm

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

12 Summary, Important Topics ...

320

7. Coordination

Qo Qo Qo

Qo

Election algorithms
Mutual exclusion (centralized, Ricart/Agrawala, ring)
Multicast (reliability, order)

Transactions

8. Replication and Consistency

a

o

a

a

Concept of consistency
Sequential consistency, release consistency

Consistency protocols (primary-based, quorum-based)

Roland Wismiiller L
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

321

12

Summary, Important Topics ...

9. Distributed File Systems

10.
11.

Qo Qo

Qo

Distributed Shared Memory

Fault Tolerance
Failure models
Physical redundancy, agreement

Recovery

Roland Wismdiller —
Betriebssysteme / verteilte Systeme Distributed Systems (1/11)

322

	0 Organisation
	1 Introduction
	1.1 What makes a distributed system?
	1.2 Characteristics of distributed systems
	1.3 Challenges and Goals of Distributed Systems
	1.4 Software Architecture
	1.5 Architectural Models
	1.6 Cluster
	1.7 Summary

	2 Middleware
	2.1 Communication in Distributed Systems
	2.2 Communication-oriented Middleware
	2.2.1 Tasks of the Middleware
	2.2.2 Programming Models
	2.2.3 Middleware Technologies
	2.2.4 Message Oriented Middleware (MOM)
	2.2.5 Summary

	2.3 Application-oriented Middleware
	2.3.1 Runtime environment
	2.3.2 Services
	2.3.3 Component model
	2.3.4 Middleware Technologies
	2.3.5 Summary

	3 Distributed Programming with Java RMI
	3.1 Introduction
	3.1.1 RMI Architecture
	3.1.2 RMI Services

	3.2 Hello World with Java RMI
	3.3 RMI in Detail
	3.3.1 Classes and Interfaces
	3.3.2 Special Features of Remote Classes
	3.3.3 Parameter Passing
	3.3.4 Remote Object References as Results
	3.3.5 Client Callbacks
	3.3.6 RMI and Threads

	3.4 Deployment
	3.4.1 Remote Class Loading in Java RMI
	3.4.2 Java Security Manager

	3.5 Summary

	4 Name Services
	4.1 Basics
	4.2 Example: JNDI

	5 Process Management
	5.1 Distributed Process Scheduling
	5.1.1 Static Scheduling
	5.1.2 Dynamic Load Balancing

	5.2 Code Migration

	6 Time and Global State
	6.1 Synchronizing Physical Clocks
	6.2 Lamport's Happened-Before Relation
	6.3 Logical Clocks
	6.4 Global State

	7 Coordination
	7.1 Election Algorithms
	7.2 Mutual Exclusion
	7.3 Group Communication (Multicast)
	7.4 Transactions

	8 Replication and Consistency
	8.1 Introduction and Motivation
	8.2 Data Centric Consistency Models
	8.3 Client Centric Consistency Models
	8.4 Distribution Protocols
	8.5 Consistency Protocols
	8.6 Summary

	9 Distributed File Systems
	9.1 General
	9.2 Case Study: NFS

	10 Distributed Shared Memory
	11 Fault Tolerance
	11.1 Introduction
	11.2 Process Elasticity
	11.3 Reliable Communication
	11.4 Recovery

