
Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (1/15) i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: January 9, 2025

Distributed Systems

Winter Term 2024/25

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) xiv

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: January 9, 2025

Distributed Systems

Winter Term 2024/25

09.01.2025

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 307

Distributed Systems
Winter Term 2024/25

11 Fault Tolerance

11 Fault Tolerance ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 308

Contents

➥ Introduction

➥ Process elasticity

➥ Reliable communication

➥ Recovery

Literature

➥ Tanenbaum, van Steen: Ch. 7

11.1 Introduction

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 309

Concepts

➥ Failure: external incorrect behavior (system no longer keeps its
promises)

➥ Error: (unobserved) incorrect internal state

➥ Fault: physical defect (in HW or SW) causing the error

➥ fault can be transient, periodic or permanent

➥ Fault tolerance: system does not fail despite a fault

➥ Requirement for reliable systems:

➥ availability: p(system is working at time t)

➥ reliability: p(system is working in time interval ∆t)

➥ safety: no major damage if system fails

➥ maintainability: effort for “repair” after a failure

309-1

Notes for slide 309:

Note the subtle difference between availability and reliability:

➥ A system that fails every 10 minutes for one millisecond is highly available
(99.998%), but very unreliable.

➥ A system that never fails but must be serviced once a year for 2 weeks is highly
reliable, but has an availability of only 96%.

11.1 Introduction ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 310

Failure models

Crash failure Server halts

Omission failure Server is not responding to requests

Receive omission Server doesn’t receive incoming requests

Send omission Server doesn’t send messages

Timing failure Response time is outside the specification

Response failure Server’s response is incorrect

Value failure Only the value of the answer is wrong

State transition f. Incorrect control flow in server

Byzantine failure Random answers at arbitrary time

➥ Further distinction: can the client detect the failure or not?

310-1

Notes for slide 310:

The term failure ist used here, because we are talking about a misbehavior of a server
process that is actually visible to a client.

Since a distributed system as a whole conistst of several clients and servers, fault tol-
erance also includes the tolerance against failures in a part of the system (e.g., the
server). Or, in other words: a failure of a system component (in the sense, that another
component will notice the misbehavior) should not lead to a failure of the complete
(distributed) system.

11.1 Introduction ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 311

Failure masking through redundancy

➥ Fault tolerant system must hide faults from other processes

➥ Most important technique: redundancy

➥ information redundancy: additional “check bits” (e.g., CRC)

➥ time redundancy: repetition of faulty actions

➥ physical redundancy: important components are provided

multiple times

➥ Example: TMR, triple modular redundancy

➥ components are replicated three times

➥ majority decision for the results

➥ protects against (Byzantine) failure of a single replicated

component

11.1 Introduction ...

(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 312

Example for TMR

V1

V3

V4

V9

V7

V6

A1

A2

A3

C1

C2

C3B3

B2

B1

V2 V5 V8

A CB

Without redundancy

With TMR

Voter

11.2 Process Elasticity

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 313

Objective: Protection Against Process Failure

➥ By replicating processes in groups

➥ message to the group is received by all members

➥ usually with totally ordered multicast

➥ Questions:

➥ organization of the groups?

➥ flat (symmetrical) vs. hierarchical (central coordinator)

➥ group administration, synchronous join / exit

➥ necessary number of replicas?

➥ k fault tolerant: failure of k processes can be tolerated

➥ for silent failures: ≥ k + 1 Processes

➥ for Byzantine failures: ≥ 2k + 1 processes

➥ agreement in faulty systems?

11.2 Process Elasticity ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 314

Agreement in faulty systems

➥ Agreement is impossible with unreliable communication

➥ two army problem

➥ Agreement of faulty processes with reliable communication

➥ Byzantine agreement problem (byzantinische Generäle)

➥ agreement only possible if > 2

3
of the processes work correctly

1 2

4

1: (1, 2, x, 4)

2: (1, 2, y, 4)

3: (t, u, v, w)

4: (1, 2, z, 4)

(i, j, k, l)

(1, 2, y ,4)

(1, 2, x ,4)

4 gets:

(1, 2, x ,4)

(e, f, g, h)

(1, 2, z ,4)

2 gets:

(1, 2, z ,4)

(a, b, c, d)

(1, 2, y ,4)

1 gets:

from 1:

from 2:

from 3:

from 4:

2

4

4
1

4
x

y

z3

information

1

2

2

1. Send information 2. Received

1

3. Send received information
to all other processes

314-1

Notes for slide 314:

In the two-army problem, two parts of an army must agree on the time for an attack,
since they can only win together over the other army:

Red

Blue1 Blue2

General A General B

500 men
300 men300 men

Generals A and B can only communicate via messengers that can be intercepted, i.e.
may not arrive.

➥ If A suggests an attack time, he doesn’t know whether B has received this mes-
sage. So he doesn’t know if B is attacking and therefore won’t attack.

➥ Even if B returns an acknowledgement, he doesn’t know if A has received it. So
he doesn’t know if A is attacking and therefore won’t attack.

➥ Even if A confirms the confirmation again, he does not know whether B has re-
ceived this confirmation. So he doesn’t know if B attacks and therefore won’t at-
tack.

➥ ...

11.3 Reliable Communication

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 315

Objective: Protection Against Communication Failures

➥ Point-to-point communication (☞ RN I)

➥ TCP masks omission failures, but not crash failures

➥ Client/server communication (☞ 2.1)

➥ possible failures:

➥ server not found
➥ lost request

➥ server crash while processing the request

➥ lost reply

➥ client crash after sending the request

➥ Group communication (☞ 7.3)

➥ Distributed commit (☞ 7.4)

11.4 Recovery

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 316

Objective: System Recovery After an Error

➥ Forward error recovery: go to a correct new state

➥ Backward error recovery: go to a correct earlier state

➥ i.e. reset to a consistent cut

➥ regular backup to stable storage (checkpointing)

➥ Independent checkpointing

➥ processes save their state independently of each other

➥ problem: domino effect

Initial state
P 1

P 2

1

2

3

4

5

6

Checkpoint

Error

316-1

Notes for slide 316:

➥ Regarding forward and backward error recovery, respectively:
Example: Reliable communication in computer networks: The retransmission of
a faulty frame is a backward error recovery, because in the end one resets to the
state in which the frame was not yet sent. The use of an error correcting code is a
forward error recovery.

➥ Regarding the domino effect:
If P2 crashes in the example, it can be reset to checkpoint 6 (CP6). However, the
cut resulting from the current state of P1 and CP6 is not consistent (because of
the last message). Therefore, P1 must also be reset (to CP5). However, the cut
(CP5, CP6) is also not consistent (because of the penultimate message). There-
fore an earlier checkpoint must be used for P2 (CP4). The cut (CP5, CP4) is also
inconsistent, so that the reset continues until the initial state is finally reached.

11.4 Recovery ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (12/15) 317

➥ Coordinated checkpoints

➥ Chandy/Lamport algorithm (☞ 6.4)

➥ alternatively: blocking 2 phase protocol

➥ problem: requires to reset all processes

➥ Local checkpoints with message logging

➥ goal: restore the crashed process to a state consistent with

the current state of the other processes

➥ reset to last checkpoint and restore the received messages

P

Q

R

Check−
point

Crash
m1

m2 m3

Restore

m2

m1

m3
Duplicate

317-1

Notes for slide 317:

If Q crashes, it is reset to the checkpoint. The recorded messages m1 and m2 can then
be replayed. Q then sends the message m3 again (assuming that the process behaves
deterministically!). R recognizes this m3 as a duplicate and discards the message.
After that the whole system is in a consistent state again.

	11 Fault Tolerance
	11.1 Introduction
	11.2 Process Elasticity
	11.3 Reliable Communication
	11.4 Recovery

