
Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (1/15) i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: December 12, 2024

Distributed Systems

Winter Term 2024/25

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (10/15) 285

Distributed Systems
Winter Term 2024/25

9 Distributed File Systems

9 Distributed File Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (10/15) 286

Contents

➥ General

➥ Case study: NFS

Literature

➥ Tanenbaum, van Steen: Ch. 10

➥ Colouris, Dollimore, Kindberg: Ch. 8

9 Distributed File Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (10/15) 287

[Coulouris, 8.1-8.3]
9.1 General

➥ Objective: support the sharing of information (files) in an intranet

➥ in the Internet: WWW

➥ Allows applications to access remote files in the same way as

local files

➥ similar (or even better) performance and reliability

➥ Allows operation of diskless nodes

➥ Examples:

➥ NFS (standard in the UNIX area)

➥ AFS (goal: scalability), CIFS (Windows), CODA, xFS, ...

9.1 General ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (10/15) 288

Requirements

➥ Transparency: access, location, mobility, performance and scaling

transparency

➥ Concurrent file updates (e.g., locks)

➥ File replication (often: local caching)

➥ Heterogeneity of hardware and operating system

➥ Fault tolerance (especially in case of server failure)

➥ often: at-least-once semantics + idempotent operations

➥ advantageous: stateless server (easy reboot)

➥ Consistency (☞ 8)

➥ Security (access control, authentication, encryption)

➥ Efficiency

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) xiii

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: December 12, 2024

Distributed Systems

Winter Term 2024/25

19.12.2024

9.1 General ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 289

Model Architecture of a Distributed File System

Server computer

Client module

Net−
work

RPC

Directory service

Flat file service

interface

Client computer

Application

program

Application

program

➥ Tasks of the client module:

➥ emulation of the file interface of the local OS

➥ if necessary, caching of files or file sections

9.1 General ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 290

Model Architecture of a Distributed File System ...

➥ Flat file service:

➥ provides idempotent access operations to files

➥ e.g., read, write, create, remove, getAttributes, setAttributes

➥ no open / close, no implicit file pointer

➥ files are identified by UFIDs (Unique File IDs)

➥ (long) integer IDs, can serve as capabilities

➥ Directory service:

➥ maps file or path names to UFIDs

➥ if necessary first authenticates the client and verifies its

access rights

➥ services for creating, deleting and modifying directories

9 Distributed File Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 291

9.2 Case Study: NFS

➥ Introduced in 1984 by Sun

➥ Open, OS independent protocol

➥ Architecture:

Net−

work

Client computer

Client

UNIX

NFS
UNIX
kernel NFS

server

Server computer

system
calls

Virtual file system Virtual file system

systemsystem
file

UNIX
file

UNIX

Application
program

Application
program

O
th

er
fil

e
sy

s. NFS
protocol

9.2 Case Study: NFS ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 292

Access Control and Authentication

➥ NFS server is stateless (up to and including NFS3)

➥ UFID (file handle): essentially just the file system ID and i-node

➥ not a capability

➥ Thus, access rights are checked with each request

➥ by the RPC protocol

➥ Authentication usually only via user and group ID

➥ extremely insecure!

➥ More possibilities in NFS3:

➥ Diffie-Hellman key exchange (insecure)

➥ Kerberos

➥ NFS4: secure RPC (RPCSEC GSS)

9.2 Case Study: NFS ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 293

Mount Service

➥ An NFS file system can be mounted in the local directory tree

Server 2

/ (root)

users

nfs

ann joejim

ClientServer 1

/ (root) / (root)

export

people students x staff

vmunix usr

jonbob

remote

mount

remote

mount

➥ Collaboration of mount command in the client with the mount

service of the NFS server

➥ on request, the mount service provides file handles of the ex-

ported directories (for name resolution)

293-1

Notes for slide 293:

A directory exported from an NFS server A may contain a subdirectory that this server
imports from another NFS server B. However, A is not allowed to export this subdirec-
tory to its clients. A client importing the directory from A must therefore also import the
subdirectory from B.

9.2 Case Study: NFS ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 294

Translation of Pathnames

➥ Iteratively (NFS3): for each directory one request to NFS server

➥ necessary because path can cross mount points

➥ inefficiency is mitigated by client caching

Automounter

➥ Goal: set up an NFS mount only when it is accessed

➥ better fault tolerance, load balancing is possible

➥ Automounter is local NFS server

➥ thereby it sees the lookup()-requests of the client

➥ On request: set up the NFS mount and create a symbolic link to
the mount point

➥ After prolonged inactivity: release the mount

9.2 Case Study: NFS ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 295

Server Caching

➥ Traditional file caching in UNIX:

➥ buffer in main memory for most recently used disk blocks

➥ read ahead : sequential blocks are loaded into cache
beforehand

➥ delayed write: modified blocks only written back when space is
needed; additionally every 30s by sync

➥ Server caching in NFS: two modes

➥ write through: write requests are executed in the server cache
and immediately also on disk

➥ advantage: no data loss in case of server crash

➥ delayed write: modified data will remain in the cache until a
commit operation is executed (i.e. file is closed)

➥ advantage: better performance if many write operations

9.2 Case Study: NFS ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 296

Client Caching

➥ NFS client buffers the results of (among other things) read / write

and lookup operations in a local cache

➥ leads to consistency issues, since now multiple copies

➥ Client is responsible for maintaining consistency

➥ Timeliness of the cache entry is checked with each access

➥ for that: compare whether the modification timestamp in the
cache matches the modification timestamp on the server

➥ in case of negative validation: cache entry is deleted

➥ if validation is successful: cache entry is considered current for
a certain time (3 - 30 s) without further checks

➥ i.e. changes only become visible after a few seconds

➥ compromise between consistency and efficiency

9.2 Case Study: NFS ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (11/15) 297

Client Caching ...

➥ Treatment of write operations:

➥ file block is marked as dirty in the cache

➥ marked blocks are sent asynchronously to the server:

➥ when closing the file

➥ at a sync operation on client machine

➥ possibly more often by block-input/output-demons

➥ Demons also realize asynchronous operations for read ahead

and delayed write

➥ for performance optimization

➥ NFS does not guarantee real consistency of client caches

	9 Distributed File Systems
	9.1 General
	9.2 Case Study: NFS

