
Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (1/15) i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: November 28, 2024

Distributed Systems

Winter Term 2024/25

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 192

Distributed Systems
Winter Term 2024/25

6 Time and Global State

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 193

➥ Synchronization of physical clocks

➥ Lamport’s happended before relation

➥ Logical clocks

➥ Global state

Literature

➥ Tanenbaum, van Steen: Kap. 5.1-5.3

➥ Colouris, Dollimore, Kindberg: Kap. 10

➥ Stallings: Kap 14.2

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 194

What is the difference between a distributed system and a
single/multiprocessor system?

➥ Single or multiprocessor system:

➥ concurrent processes: pseudo-parallel by time sharing or

truely parallel

➥ global time: all events in the processes can be ordered

unambiguously in terms of time

➥ global state: at any time a unique state of the system can be

determined

➥ Distributed system

➥ true parallelism

➥ no global time

➥ no unique global state

194-1

Notes for slide 194:

Actually, the transition between multiprocessor systems and distributed systems is
somewhat smooth. A UMA (uniform memory access) multiprocessor system, where
all CPUs (or cores) access the same physical memory via a bus interconnect, still has
a global time, as the bus serializes all memory accesses. Nevertheless, if operations
are performed just by using the local caches, even is such systems, these operations
cannot be ordered globally.

Today’s high-end multicore systems typically have a NUMA architecture, where (groups
or) cores have a dedicated bus to a local memory module, but can also access the
other memory modules via a bridge. This architecture allows true parallel execution on
several cores and thus, must in some cases be treated as a distributed system.

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 195

Concurrency vs. (true) parallelism

A B C Dsequential

A B C D A A AB BD D DCconcurrent

A
B

C
D

One time line, processes can be interrupted by others

parallel

Each node / process has its own
time line! Events in different
processes can truely happen
simultaneously.

One time line, processes are not interrupted.

at any time: interleaved execution.

Example: 4 processes

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 196

Global Time

➥ In a single/multiprocessor system

➥ each event can (at least theoretically) be assigned a unique

time stamp of the same local clock

➥ for multiprocessor systems: synchronization at the shared

memory

➥ In distributed systems:

➥ many local clocks (one per node)

➥ exact synchronization of clocks is (on principle!) not possible

➥ ⇒ the sequence of events on different nodes can not (always)

be determined uniquely

➥ (cf. special theory of relativity)

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 197

An effect of distribution

➥ Preliminary remark: events in distributed systems

Process 1

Process 2 Time

receive the message

send a message local event

local events

➥ Scenario: two processes observe two other processes

Observer A

Observer B

Process 1

Process 2
z

yx

z x y

x y z

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 198

An effect of distribution ...

➥ The observers may see the events in different order!

➥ Problem e.g., if the observers are replicated databases and the

events are database updates

➥ replicas are no longer consistent!

➥ Even from time stamps of (local) clocks it is not possible to

determine the order of events in a meaningful way

➥ Hence, in such cases:

➥ events with timestamps of logical clocks (☞ 6.3)

➥ logical clocks allow conclusions to be made about causal order

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 199

[Coulouris, 10.3]
6.1 Synchronizing Physical Clocks

➥ Physical clock shows ’real’ time

➥ based on UTC (Universal Time Coordinated)

➥ Each computer has its own (physical) clock

➥ quartz oscillator with counter in HW and if necessary in SW

➥ Clocks usually differ from each other (offset)

➥ Offset changes over time: clock drift

➥ typ. 10−6 for quartz crystals, 10−13 for atomic clocks

➥ Goal of clock synchronization:

➥ keep the offset of the clocks under a given limit

➥ clock skew: maximum allowed deviation

6.1 Synchronizing Physical Clocks ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 200

Cristian’s Method

➥ Assumption: A and B want to synchronize their clocks with each
other

➥ B can also be a time server (e.g. with GPS clock)

➥ Protocol:

3. A sets its clock
to t + (t1−t0)/2

t1

(t)

t

2. B reads time t and
sends it to A

1. A sends
request to B

A

B

t0

➥ A must take the

runtime of the

reply message

into account

➥ estimate: runtime

= half the round

trip time

= (t1− t0)/2

200-1

Notes for slide 200:

What A should actually know is the transit time of the reply message from B to A. How-
ever, for reasons of principle this cannot be measured (exactly) (a measurement must
always be made with a single clock at a single location). The best approximation that
A can use is half the round trip time.

The interrupt latencies would not be a problem as long as they are known and con-
stant. However, the unknown differences in the runtimes and latencies, which lead to
unavoidable errors, can be problematic. In practice, they can be minimized by technical
measures (e.g., in the precision time protocol IEEE 1588, the time stamps are added /
read by the network interface card) and by statistical approaches.

The principal problem is that the message transfer time can be different for the two
directions.

6.1 Synchronizing Physical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 201

Cristian’s Method: Discussion

➥ Problem: runtimes of both messages may be different

➥ systematic differences (different paths / latencies)

➥ statistical fluctuations of the transit time

➥ Accuracy estimate, if minimum transit time (min) is known:

➥ B can have determined t at the earliest at time t0 + min, at

the latest at time t1 − min (measured with A’s clock)

➥ thus accuracy ± ((t1 − t0)/2 − min)

➥ To improve accuracy:

➥ execute the message exchange multiple times

➥ use the one with minimum round trip time

201-1

Notes for slide 201:

In [WRA02] it is shown how to improve the accuracy of successive synchronizations
even further by looking at the “inverted” RTT (i.e. from an answer to the next request) in
addition to the RTT of the requests.

Literature

[WRA02] T. Worsch, R. Reussner, W. Augustin: On Benchmarking Collective MPI
Operations, In D. Kranzlmüller et al. (Eds.): Euro PVM/MPI 2002, LNCS
2474, pages 271-279, 2002.
http://www.springerlink.com/content/7ygll9u0h02t8mth

http://www.springerlink.com/content/7ygll9u0h02t8mth

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) ix

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: November 28, 2024

Distributed Systems

Winter Term 2024/25

28.11.2024

6.1 Synchronizing Physical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 202

Adjusting the clock

➥ Turning back is problematic

➥ order / uniqueness of time stamps

➥ Non-monotonous “jumping” of the time also problematic

➥ Therefore: clock is generally adjusted slowly

➥ runs faster / slower, until clock skew has been compensated

Further protocols

➥ Berkeley algorithm: server calculates mean value of all clocks

➥ NTP (Network Time Protocol): hierarchy of time servers in the

Internet with periodic synchronization

➥ IEEE 1588: clock synchronization for automation systems

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 203

[Coulouris, 10.4]
6.2 Lamport’s Happened-Before Relation

➥ In two cases, the order of events can also be determined without

a global clock:

➥ if the events are in the same process, local clock is sufficient

➥ the sending of a message is always before its reception

➥ Definition of the happened-before causality relation → (causality

relation)

➥ if events a, b are in the same process i and ti(a) < ti(b)
(ti: time stamp with i’s clock), then a → b

➥ if a is the sending of a message and b its receipt, then a → b

➥ if a → b and b → c, then also a → c (transitivity)

➥ a → b means, that b may causally depend on a

6.2 Lamport’s Happened-Before Relation ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 204

Examples

Process 1

Process 2

Process 3

Process 4

hf

c

d

k

a

e

b

g

j

i

l

➥ Among others, we have here:

➥ b → i and a → h (events in the same process)

➥ c → d and e → f (sending / receiving a message)

➥ c → k and a → i (transitivity)

➥ g 6→ l and l 6→ g: l and g are concurrent (nebenläufig)

6 Time and Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 205

[Coulouris, 10.4]
6.3 Logical Clocks

➥ Physical clocks cannot be synchronized exactly

➥ therefore: unsuitable for determining the order in which events
occurred

➥ Logical clocks

➥ refer to the causal order of events (happened-before relation)

➥ no fixed relationship to real time

➥ In the following:

➥ Lamport timestamps

➥ are consistent with the happened-before relation

➥ vector timestamps

➥ allow sorting of events according to causality (i.e.
happened-before relation)

6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 206

Lamport Timestamps

➥ Lamport timestamps are natural numbers

➥ Each process i has a local counter Li, that is updated as follows:

➥ at (more precisely: before) each local event: Li = Li + 1

➥ in each message, the time stamp Li of the send event is also

sent

➥ at receipt of a message with time stamp t:
Li = max(Li, t + 1)

➥ Lamport time stamps are consistent with the causality:

➥ a → b ⇒ L(a) < L(b), where L is the Lamport timestamp

in the respective process

➥ but the reversal does not apply!

206-1

Notes for slide 206:

➥ When a local event occurs, the lamport time is incremented, before the time
stamp is attached to the event.

➥ When a receive event occurs, the sequence is as follows:

1. the message is received and the Lamport time stamp t is extracted from it,

2. the lamport clock is updated to Li = max(Li, t + 1),

3. the resulting time stamp is attached to the receive event.

6.3 Logical Clocks ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207

Lamport Timestamps: Example

3

1

1

2

1

1 2
1

Process 1

Process 2

Process 3

Process 4
l

c

d f h

k

a

e

b

g

j

i

1

2 3 4

6
4

5

➥ Among others, we have here:

➥ c → k and L(c) < L(k)

➥ g 6→ j and L(g) 6< L(j)

➥ g 6→ l, but still L(g) < L(l)

6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 208

Vector Timestamps

➥ Objective: timestamps that characterize causality

➥ a → b ⇔ V (a) < V (b), where V is the vector timestamp

in the respective process

➥ A vector clock in a system with N processes is a vector of N
integers

➥ each process has its own vector Vi

➥ Vi[i]: number of events that have occurred so far in process i

➥ Vi[j], j 6= i: number of events in process j, of which i knows

➥ i.e. by which it could have been causally influenced

6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 209

Vector Timestamps ...

➥ Update of Vi in process i:

➥ before any local event: Vi[i] = Vi[i] + 1

➥ Vi is included in every message sent

➥ when receiving a message with timestamp t:
Vi[j] = max(Vi[j], t[j]) for all j = 1, 2, . . . , N

➥ Comparison of vector timestamps:

➥ V = V ′ ⇔ V [j] = V ′[j] for all j = 1, 2, . . . , N

➥ V ≤ V ′ ⇔ V [j] ≤ V ′[j] for all j = 1, 2, . . . , N

➥ V < V ′ ⇔ V ≤ V ′ ∧ V 6= V ′

➥ the relation < defines a partial order

209-1

Notes for slide 209:

➥ When a local event occurs, the local component of the vector time is incremented,
before the time stamp is attached to the event.

➥ When a receive event occurs, the sequence is as follows:

1. the message is received and the vector time stamp t is extracted from it,

2. the vector clock is updated to Vi[j] = max(Vi[j], t[j]) for all j =
1, 2, . . . , N ,

3. the resulting time stamp is attached to the receive event.

6.3 Logical Clocks ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 210

Vector Timestamps: Example

Process 1

Process 2

Process 3

Process 4

f h

k

a

e

b

g

j

i

l

c

d

(1,0,0,0)

(0,0,1,0)

(0,0,0,1) (0,0,0,2) (0,0,0,3)

(0,1,2,0)

(0,1,3,1) (0,1,4,1)

(0,1,0,0) (0,2,0,0)

(2,1,4,1) (3,1,4,1)

➥ Among others, we have here:

➥ c → k and V (c) < V (k)

➥ g 6→ l and V (g) 6< V (l), as well as l 6→ g and V (l) 6< V (g)

➥ V (l) and V (g) not comparable ⇔ l and g concurrent

6.4 Global State
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 211

A Motivating Example

➥ Scenario: peer-to-peer application, processes send requests to

each other

➥ Question: when can the application terminate?

➥ Wrong answer: when no process is processing a request

➥ reason: requests can still be on the way in messages!

idle idle

Request
Process 1 Process 2

➥ Other applications: distributed garbage collection, distributed

deadlock detection, ...

6.4 Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 212

➥ How can we determine the overall state of a distributed process

system?

➥ naı̈vely: union of the states of all processes (wrong!)

➥ Two aspects have to be considered:

➥ messages that are still in transit

➥ must be included in the state

➥ lack of global time

➥ a global state at time t cannot be defined!

➥ process states always refer to local (and thus different)

times
➥ question: condition on local times? ⇒ consistent cuts

6.4 Global State ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 213

Consistent Cuts

➥ Objective: build a meaningful global state from local states (which
are not determined simultaneously)

➥ Processes are modeled by sequences of events:

Process 1

Process 2

Process 3

Inconsistent cutConsistent cuts

➥ Cut: consider a prefix of the event sequence in each process

➥ Consistent cut:

➥ if the cut contains the reception of a message, it also contains
the sending of this message

6.4 Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 214

The Snapshot Algorithm of Chandy and Lamport

➥ Determines online a “snapshot” of the global state

➥ i.e.: a consistent cut

➥ The global state consists of:

➥ the local states of all processes

➥ the status of all communication connections

➥ i.e. the messages in transmission

➥ Assumptions / properties:

➥ reliable message channels with sequence retention

➥ process graph is strongly connected

➥ each process can trigger a snapshot at any time

➥ the processes are not blocked during the algorithm

214-1

Notes for slide 214:

A graph is strongly connected if there is a path from each node to each other node.
This property is necessary for each process to learn that a snapshot has been initi-
ated.

6.4 Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 215

The Snapshot Algorithm of Chandy and Lamport ...

➥ When a process wants to initiate a snapshot:

➥ process first saves its local state

➥ then it sends a marker message over each outgoing channel

➥ When a process receives a marker message:

➥ if it has not yet saved its local state:

➥ it saves its local state

➥ and sends a marker over each outgoing channel

➥ else:

➥ for the channel where the marker was received, it saves all

messages that have been received since the local state

was saved
➥ i.e., it records the status of the channel

6.4 Global State ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 216

The Snapshot Algorithm of Chandy and Lamport ...

➥ The algorithm terminates when each process has received a

marker message on each channel

➥ the determined consistent section is then (initially) stored in a

distributed way

6.4 Global State ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 217

Example for the algorithm
of Chandy/Lamport

e

b

dc

a

P2

P1

P3

4. P1, P2, P3 save the incoming messages, until all markers are received
P2 receives the marker from P1, saves its state, and sends markers

3. P2 receives and processes a
2. P3 receives a marker from P1, saves its state, and sends markers

M

M
M

1. P1 initiates a snapshot, saves its state, and sends markers

6.4 Global State ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 218

Sequence in the Example and Selected Cut

P1

P2

P3

d
b

e

a

c

consistent cut determined by the algorithm

displayed initial state

➥ The cut consists of the local states of P1, P2, P3 and the

messages b, c, d, e

	6 Time and Global State
	6.1 Synchronizing Physical Clocks
	6.2 Lamport's Happened-Before Relation
	6.3 Logical Clocks
	6.4 Global State

