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➥ Synchronization of physical clocks

➥ Lamport’s happended before relation

➥ Logical clocks

➥ Global state

Literature

➥ Tanenbaum, van Steen: Kap. 5.1-5.3

➥ Colouris, Dollimore, Kindberg: Kap. 10

➥ Stallings: Kap 14.2
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What is the difference between a distributed system and a
single/multiprocessor system?

➥ Single or multiprocessor system:

➥ concurrent processes: pseudo-parallel by time sharing or

truely parallel

➥ global time: all events in the processes can be ordered

unambiguously in terms of time

➥ global state: at any time a unique state of the system can be

determined

➥ Distributed system

➥ true parallelism

➥ no global time

➥ no unique global state
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Concurrency vs. (true) parallelism

A B C Dsequential

A B C D A A AB BD D DCconcurrent

A
B

C
D

One time line, processes can be interrupted by others

parallel

Each node / process has its own
time line! Events in different
processes can truely happen
simultaneously.

One time line, processes are not interrupted.

at any time: interleaved execution.

Example: 4 processes
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Global Time

➥ In a single/multiprocessor system

➥ each event can (at least theoretically) be assigned a unique

time stamp of the same local clock

➥ for multiprocessor systems: synchronization at the shared

memory

➥ In distributed systems:

➥ many local clocks (one per node)

➥ exact synchronization of clocks is (on principle!) not possible

➥ ⇒ the sequence of events on different nodes can not (always)

be determined uniquely

➥ (cf. special theory of relativity)
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An effect of distribution

➥ Preliminary remark: events in distributed systems

Process 1

Process 2 Time

receive the message

send a message local event

local events

➥ Scenario: two processes observe two other processes

Observer A

Observer B

Process 1

Process 2
z

yx

z x y

x y z
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An effect of distribution ...

➥ The observers may see the events in different order!

➥ Problem e.g., if the observers are replicated databases and the

events are database updates

➥ replicas are no longer consistent!

➥ Even from time stamps of (local) clocks it is not possible to

determine the order of events in a meaningful way

➥ Hence, in such cases:

➥ events with timestamps of logical clocks (☞ 6.3)

➥ logical clocks allow conclusions to be made about causal order
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[Coulouris, 10.3]
6.1 Synchronizing Physical Clocks

➥ Physical clock shows ’real’ time

➥ based on UTC (Universal Time Coordinated)

➥ Each computer has its own (physical) clock

➥ quartz oscillator with counter in HW and if necessary in SW

➥ Clocks usually differ from each other (offset)

➥ Offset changes over time: clock drift

➥ typ. 10−6 for quartz crystals, 10−13 for atomic clocks

➥ Goal of clock synchronization:

➥ keep the offset of the clocks under a given limit

➥ clock skew: maximum allowed deviation
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Cristian’s Method

➥ Assumption: A and B want to synchronize their clocks with each
other

➥ B can also be a time server (e.g. with GPS clock)

➥ Protocol:

1. A sends
request to B

A

B

t0

➥ A must take the

runtime of the

reply message

into account

➥ estimate: runtime

= half the round

trip time

= (t1− t0)/2
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Cristian’s Method

➥ Assumption: A and B want to synchronize their clocks with each
other

➥ B can also be a time server (e.g. with GPS clock)

➥ Protocol:

transit time
different

t1

(t)

t

3. A sets its clock
to  t + (t1−t0)/2

2. B reads time t and
sends it to A

1. A sends
request to B

A

B

t0

➥ A must take the

runtime of the

reply message

into account

➥ estimate: runtime

= half the round

trip time

= (t1− t0)/2
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Cristian’s Method: Discussion

➥ Problem: runtimes of both messages may be different

➥ systematic differences (different paths / latencies)

➥ statistical fluctuations of the transit time

➥ Accuracy estimate, if minimum transit time (min) is known:

➥ B can have determined t at the earliest at time t0 + min, at

the latest at time t1 − min (measured with A’s clock)

➥ thus accuracy ± ((t1 − t0)/2 − min)

➥ To improve accuracy:

➥ execute the message exchange multiple times

➥ use the one with minimum round trip time
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Stand: November 28, 2024

Distributed Systems

Winter Term 2024/25

28.11.2024



6.1 Synchronizing Physical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 202

Adjusting the clock

➥ Turning back is problematic

➥ order / uniqueness of time stamps

➥ Non-monotonous “jumping” of the time also problematic

➥ Therefore: clock is generally adjusted slowly

➥ runs faster / slower, until clock skew has been compensated

Further protocols

➥ Berkeley algorithm: server calculates mean value of all clocks

➥ NTP (Network Time Protocol): hierarchy of time servers in the

Internet with periodic synchronization

➥ IEEE 1588: clock synchronization for automation systems
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[Coulouris, 10.4]
6.2 Lamport’s Happened-Before Relation

➥ In two cases, the order of events can also be determined without

a global clock:

➥ if the events are in the same process, local clock is sufficient

➥ the sending of a message is always before its reception

➥ Definition of the happened-before causality relation → (causality

relation)

➥ if events a, b are in the same process i and ti(a) < ti(b)
(ti: time stamp with i’s clock), then a → b

➥ if a is the sending of a message and b its receipt, then a → b

➥ if a → b and b → c, then also a → c (transitivity)

➥ a → b means, that b may causally depend on a
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Examples

Process 1

Process 2

Process 3

Process 4

hf

c

d

k

a

e

b

g

j

i

l

➥ Among others, we have here:

➥ b → i and a → h (events in the same process)

➥ c → d and e → f (sending / receiving a message)

➥ c → k and a → i (transitivity)

➥ g 6→ l and l 6→ g: l and g are concurrent (nebenläufig)
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[Coulouris, 10.4]
6.3 Logical Clocks

➥ Physical clocks cannot be synchronized exactly

➥ therefore: unsuitable for determining the order in which events
occurred

➥ Logical clocks

➥ refer to the causal order of events (happened-before relation)

➥ no fixed relationship to real time

➥ In the following:

➥ Lamport timestamps

➥ are consistent with the happened-before relation

➥ vector timestamps

➥ allow sorting of events according to causality (i.e.
happened-before relation)



6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 206

Lamport Timestamps

➥ Lamport timestamps are natural numbers

➥ Each process i has a local counter Li, that is updated as follows:

➥ at (more precisely: before) each local event: Li = Li + 1

➥ in each message, the time stamp Li of the send event is also

sent

➥ at receipt of a message with time stamp t:
Li = max(Li, t + 1)

➥ Lamport time stamps are consistent with the causality:

➥ a → b ⇒ L(a) < L(b), where L is the Lamport timestamp

in the respective process

➥ but the reversal does not apply!
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Lamport Timestamps: Example

3

1

1

2

1

1 2
1

Process 1

Process 2

Process 3

Process 4
l

c

d f h

k

a

e

b

g

j

i

1

2 3 4

6
4

5

➥ Among others, we have here:

➥ c → k and L(c) < L(k)

➥ g 6→ j and L(g) 6< L(j)

➥ g 6→ l, but still L(g) < L(l)
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d f h

k

a

e

b

g

j

i

1

2 3 4

6
4

5L   = max(2, 1+1)3

➥ Among others, we have here:

➥ c → k and L(c) < L(k)

➥ g 6→ j and L(g) 6< L(j)

➥ g 6→ l, but still L(g) < L(l)



6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207

Lamport Timestamps: Example

3

1

1

2

1

1 2
1

Process 1

Process 2

Process 3

Process 4
l

c

d f h

k

a

e

b

g

j

i

1

2 3 4

6
4

5L   = max(3, 1+1)3

➥ Among others, we have here:

➥ c → k and L(c) < L(k)

➥ g 6→ j and L(g) 6< L(j)

➥ g 6→ l, but still L(g) < L(l)



6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207

Lamport Timestamps: Example

3

1

1

2

1

1 2
1

Process 1

Process 2

Process 3

Process 4
l

c

d f h

k

a

e

b

g

j

i

1

2 3 4

6
4

5

L   = max(2, 4+1)1
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6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207

Lamport Timestamps: Example

3

1

1

2

1

1 2
1

Process 1

Process 2

Process 3

Process 4
l

c

d f h

k

a

e

b

g

j

i

1

2 3 4

6
4

5

➥ Among others, we have here:

➥ c → k and L(c) < L(k)

➥ g 6→ j and L(g) 6< L(j)

➥ g 6→ l, but still L(g) < L(l)



6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 208

Vector Timestamps

➥ Objective: timestamps that characterize causality

➥ a → b ⇔ V (a) < V (b), where V is the vector timestamp

in the respective process

➥ A vector clock in a system with N processes is a vector of N
integers

➥ each process has its own vector Vi

➥ Vi[i]: number of events that have occurred so far in process i

➥ Vi[j], j 6= i: number of events in process j, of which i knows

➥ i.e. by which it could have been causally influenced



6.3 Logical Clocks ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 209

Vector Timestamps ...

➥ Update of Vi in process i:

➥ before any local event: Vi[i] = Vi[i] + 1

➥ Vi is included in every message sent

➥ when receiving a message with timestamp t:
Vi[j] = max(Vi[j], t[j]) for all j = 1, 2, . . . , N

➥ Comparison of vector timestamps:

➥ V = V ′ ⇔ V [j] = V ′[j] for all j = 1, 2, . . . , N

➥ V ≤ V ′ ⇔ V [j] ≤ V ′[j] for all j = 1, 2, . . . , N

➥ V < V ′ ⇔ V ≤ V ′ ∧ V 6= V ′

➥ the relation < defines a partial order
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Vector Timestamps: Example

Process 1

Process 2

Process 3

Process 4

f h

k

a

e

b

g

j

i

l

c

d

(1,0,0,0)

(0,0,1,0)

(0,0,0,1) (0,0,0,2) (0,0,0,3)

(0,1,2,0)

(0,1,3,1) (0,1,4,1)

(0,1,0,0) (0,2,0,0)

(2,1,4,1) (3,1,4,1)

➥ Among others, we have here:

➥ c → k and V (c) < V (k)

➥ g 6→ l and V (g) 6< V (l), as well as l 6→ g and V (l) 6< V (g)

➥ V (l) and V (g) not comparable ⇔ l and g concurrent
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A Motivating Example

➥ Scenario: peer-to-peer application, processes send requests to

each other

➥ Question: when can the application terminate?

➥ Answer: when no process is processing a request
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A Motivating Example

➥ Scenario: peer-to-peer application, processes send requests to

each other

➥ Question: when can the application terminate?

➥ Wrong answer: when no process is processing a request

➥ reason: requests can still be on the way in messages!

idle idle

Request
Process 1 Process 2

➥ Other applications: distributed garbage collection, distributed

deadlock detection, ...
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➥ How can we determine the overall state of a distributed process

system?

➥ naı̈vely: union of the states of all processes (wrong!)

➥ Two aspects have to be considered:

➥ messages that are still in transit

➥ must be included in the state

➥ lack of global time

➥ a global state at time t cannot be defined!

➥ process states always refer to local (and thus different)

times
➥ question: condition on local times? ⇒ consistent cuts
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Consistent Cuts

➥ Objective: build a meaningful global state from local states (which
are not determined simultaneously)

➥ Processes are modeled by sequences of events:

Process 1

Process 2

Process 3

➥ Cut: consider a prefix of the event sequence in each process

➥ Consistent cut:

➥ if the cut contains the reception of a message, it also contains
the sending of this message
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Consistent Cuts

➥ Objective: build a meaningful global state from local states (which
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Cut Cut Cut Cut
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Consistent Cuts

➥ Objective: build a meaningful global state from local states (which
are not determined simultaneously)

➥ Processes are modeled by sequences of events:

Process 1

Process 2

Process 3

Inconsistent cutConsistent cuts

➥ Cut: consider a prefix of the event sequence in each process

➥ Consistent cut:

➥ if the cut contains the reception of a message, it also contains
the sending of this message
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The Snapshot Algorithm of Chandy and Lamport

➥ Determines online a “snapshot” of the global state

➥ i.e.: a consistent cut

➥ The global state consists of:

➥ the local states of all processes

➥ the status of all communication connections

➥ i.e. the messages in transmission

➥ Assumptions / properties:

➥ reliable message channels with sequence retention

➥ process graph is strongly connected

➥ each process can trigger a snapshot at any time

➥ the processes are not blocked during the algorithm
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The Snapshot Algorithm of Chandy and Lamport ...

➥ When a process wants to initiate a snapshot:

➥ process first saves its local state

➥ then it sends a marker message over each outgoing channel

➥ When a process receives a marker message:

➥ if it has not yet saved its local state:

➥ it saves its local state

➥ and sends a marker over each outgoing channel

➥ else:

➥ for the channel where the marker was received, it saves all

messages that have been received since the local state

was saved
➥ i.e., it records the status of the channel
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The Snapshot Algorithm of Chandy and Lamport ...

➥ The algorithm terminates when each process has received a

marker message on each channel

➥ the determined consistent section is then (initially) stored in a

distributed way
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Example for the algorithm
of Chandy/Lamport
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Example for the algorithm
of Chandy/Lamport
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1. P1 initiates a snapshot, saves its state, and sends markers
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Example for the algorithm
of Chandy/Lamport

e

b

dc

a

P2

P1

P3

2. P3 receives a marker from P1, saves its state, and sends markers
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1. P1 initiates a snapshot, saves its state, and sends markers
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Example for the algorithm
of Chandy/Lamport
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3. P2 receives and processes a
2. P3 receives a marker from P1, saves its state, and sends markers
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1. P1 initiates a snapshot, saves its state, and sends markers
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Example for the algorithm
of Chandy/Lamport
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P2 receives the marker from P1, saves its state, and sends markers
3. P2 receives and processes a

M

M

2. P3 receives a marker from P1, saves its state, and sends markers

M

M

1. P1 initiates a snapshot, saves its state, and sends markers
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Example for the algorithm
of Chandy/Lamport
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4. P1, P2, P3 save the incoming messages, until all markers are received
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P2 receives the marker from P1, saves its state, and sends markers
3. P2 receives and processes a

M
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2. P3 receives a marker from P1, saves its state, and sends markers
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1. P1 initiates a snapshot, saves its state, and sends markers
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Example for the algorithm
of Chandy/Lamport

P2

P1

P3

4. P1, P2, P3 save the incoming messages, until all markers are received

e

c

b

d

P2 receives the marker from P1, saves its state, and sends markers
3. P2 receives and processes a
2. P3 receives a marker from P1, saves its state, and sends markers
1. P1 initiates a snapshot, saves its state, and sends markers
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Sequence in the Example and Selected Cut

P1

P2

P3

d
b

e
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c

displayed initial state

➥ The cut consists of the local states of P1, P2, P3 and the

messages b, c, d, e
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Sequence in the Example and Selected Cut

P1

P2

P3

d
b

e
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c

consistent cut determined by the algorithm

➥ The cut consists of the local states of P1, P2, P3 and the

messages b, c, d, e
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