Distributed Systems

Winter Term 2024/25

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: November 28, 2024

=*===* Roland Wismller .
=1%7= Betriebssysteme / verteilte Systeme Distributed Systems (1/15)



Distributed Systems

Winter Term 2024/25

6 Time and Global State

=T===" Roland Wismdiller istri
=== Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 1 92




6 Time and Global State ... "

= Synchronization of physical clocks
= | amport’s happended before relation
= | ogical clocks

= (Global state

Literature

= Tanenbaum, van Steen: Kap. 5.1-5.3
= Colouris, Dollimore, Kindberg: Kap. 10
= Stallings: Kap 14.2

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 193




6 Time and Global State ... "

What is the difference between a distributed system and a
single/multiprocessor system?

= Single or multiprocessor system:

= concurrent processes: pseudo-parallel by time sharing or
truely parallel

= global time: all events in the processes can be ordered
unambiguously in terms of time

= global state: at any time a unique state of the system can be
determined

= Distributed system
= true parallelism
= no global time
= No unique global state

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 194




6 Time and Global State ... "

Concurrency vs. (true) parallelism

Example: 4 processes

sequential

One time line, processes are not interrupted.

concurrent

One time line, processes can be interrupted by others
at any time: interleaved execution.

Each node / process has its own
time line! Events in different
processes can truely happen
simultaneously.

parallel

ET5=7" Roland Wismdiller istri
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 195



6 Time and Global State ... "

Global Time

= |n a single/multiprocessor system

= each event can (at least theoretically) be assigned a unique
time stamp of the same local clock

= for multiprocessor systems: synchronization at the shared
memory
= |n distributed systems:
= many local clocks (one per node)
= exact synchronization of clocks is (on principle!) not possible

= — the sequence of events on different nodes can not (always)
be determined uniquely

= (cf. special theory of relativity)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 196



6 Time and Global State ... ‘I

An effect of distribution

= Preliminary remark: events in distributed systems

Process 1 ® ® -
local events receive the message
Process 2 - = Time

send a message local event

= Scenario: two processes observe two other processes

X y Z

Observer A -
X y /
Process 1 -
Process 2 e -
Observer B \- -
Z X y

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 197




6 Time and Global State ... "

An effect of distribution ...
= The observers may see the events in different order!

= Problem e.g., if the observers are replicated databases and the
events are database updates

= replicas are no longer consistent!

= Even from time stamps of (local) clocks it is not possible to
determine the order of events in a meaningful way

= Hence, in such cases:
= events with timestamps of logical clocks (= 6.3)
= |ogical clocks allow conclusions to be made about causal order

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 198




6 Time and Global State ... ‘I

6.1

Synchronizing Physical Clocks [Coulouris, 10.3]

Physical clock shows real’ time
= pbased on UTC (Universal Time Coordinated)

Each computer has its own (physical) clock
= quartz oscillator with counter in HW and if necessary in SW

Clocks usually differ from each other (offset)
= (QOffset changes over time: clock drift
- typ. 10~ ¢ for quartz crystals, 10— 13 for atomic clocks

Goal of clock synchronization:
= keep the offset of the clocks under a given limit
= clock skew: maximum allowed deviation

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 199




6.1 Synchronizing Physical Clocks ...

d

Cristian’s Method

= Assumption: A and B want to synchronize their clocks with each

other

= B can also be a time server (e.g. with GPS clock)

= Protocol:
1. A sends
request to B
t0
A \ >
B -

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Distributed Systems (7/15)

200



6.1 Synchronizing Physical Clocks ... ‘I

Cristian’s Method

= Assumption: A and B want to synchronize their clocks with each
other

= B can also be a time server (e.g. with GPS clock)

= Protocol:
1. A sends
request to B

t0 tl

A : } -

(1)
B - >
{
2.B reads time t and
sendsitto A

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 200




6.1 Synchronizing Physical Clocks ... ‘I

Cristian’s Method

= Assumption: A and B want to synchronize their clocks with each
other

= B can also be a time server (e.g. with GPS clock)

w Protocol:

1. A sends 3. A sets its clock = A must take the
request to B to t+ (t1-t0)/2 runtime of the

A 0 t _ reply message
(1) Into account
B , . = estimate: runtime
t = half the round
2.B reads time t and trip time
sends it to A = (t1 — t0)/2
B = E{g{ﬁggsvs\/)ig[[re\irjrlllgr/ verteilte Systeme Distributed Systems (7/15) 200




6.1 Synchronizing Physical Clocks ... ‘I

Cristian’s Method

= Assumption: A and B want to synchronize their clocks with each
other

= B can also be a time server (e.g. with GPS clock)

= Protocol:
1. A sends 3 A sets its clock = A must take the
request to B to t+ (t1- tO)/2 runtime of the

reply message

A \ into account
w estimate: runtime

i = half the round
2 B reads tlmetand (lnterrupt ) trip time
sends it to A latency = (t1 — t0)/2

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 200




6.1 Synchronizing Physical Clocks ... ‘I

Cristian’s Method

= Assumption: A and B want to synchronize their clocks with each
other

= B can also be a time server (e.g. with GPS clock)

w Protocol:

1. A sends 3. A sets its clock = A must take the
request to B to t+ (t1-t0)/2 runtime of the

A t0 1 reply message
\ (1) into account
B , \ . = estimate: runtime
t \\ = half the round

2.B reads time t and different trip time
sends it to A transit time = (t1 — t0)/2

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 200




6.1 Synchronizing Physical Clocks ... "

Cristian’s Method: Discussion

= Problem: runtimes of both messages may be different
= systematic differences (different paths / latencies)
= statistical fluctuations of the transit time

= Accuracy estimate, if minimum transit time (man) is known:

= B can have determined t at the earliest at time t0 4+ min, at
the latest at time t1 — min (measured with A’s clock)

= thus accuracy £+ ((t1 — t0)/2 — min)

= O iImprove accuracy:
= execute the message exchange multiple times
= use the one with minimum round trip time

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 201




Distributed Systems

Winter Term 2024/25

28.11.2024

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: November 28, 2024

=*===* Roland Wismller .
=1%7= Betriebssysteme / verteilte Systeme Distributed Systems (8/15)



6.1 Synchronizing Physical Clocks ... "

Adjusting the clock

= Turning back is problematic
= order / uniqueness of time stamps

= Non-monotonous “jumping” of the time also problematic

= Therefore: clock is generally adjusted slowly
= runs faster / slower, until clock skew has been compensated

Further protocols

= Berkeley algorithm: server calculates mean value of all clocks

= NTP (Network Time Protocol): hierarchy of time servers in the
Internet with periodic synchronization

= |EEE 1588: clock synchronization for automation systems

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 202




6 Time and Global State ... "

6.2 Lamport’s Happened-Before Relation [Coulouris, 10.4]

= |n two cases, the order of events can also be determined without
a global clock:
= if the events are in the same process, local clock is sufficient
= the sending of a message is always before its reception

= Definition of the happened-before causality relation — (causality
relation)

= if events a, b are in the same process ¢ and t;(a) < t;(b)
(t;: time stamp with ¢’s clock), thena — b

= if a is the sending of a message and b its receipt, thena — b
= ifa — band b — ¢, then also a — ¢ (transitivity)

= a — b means, that b may causally depend on a

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 203



6.2 Lamport’'s Happened-Before Relation ... "

Examples
Process 1 o—
cC g /
Process 2 ® .
) -\4 p ’/

Process 3 - >
/

Process 4

= Among others, we have here:

Q.
~

= b — 2 and a — h (events in the same process)
=» ¢ — dand e — f (sending /receiving a message)
= ¢ — k and a — 1 (transitivity)

- g A landl 4 g:1 and g are concurrent (nebenlaufig)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 204




6 Time and Global State ... "

6.3 Logical Clocks [Coulouris, 10.4]

= Physical clocks cannot be synchronized exactly
= therefore: unsuitable for determining the order in which events
occurred
= | ogical clocks
= refer to the causal order of events (happened-before relation)
= no fixed relationship to real time

= |n the following:
= | amport timestamps
= are consistent with the happened-before relation
= vector timestamps

= allow sorting of events according to causality (i.e.
happened-before relation)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 205




6.3 Logical Clocks ... d

Lamport Timestamps
= | amport timestamps are natural numbers

= Each process ¢ has a local counter L;, that is updated as follows:
= at (more precisely: before) each local event: L; = L; + 1

= in each message, the time stamp L; of the send event is also
sent

= at receipt of a message with time stamp t.:
L,,; == maX(Li, t —|— ]_)
= | amport time stamps are consistent with the causality:

» a—>b = L(a) < L(b), where L is the Lamport timestamp
In the respective process

= put the reversal does not apply!

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 206




6.3 Logical Clocks ... d

Lamport Timestamps: Example

Process 1

b
O
1
C g
Process 2 -
d h
Process 3 col 1 ! >
1 2
e
1

Process 4

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207




6.3 Logical Clocks ... d

Lamport Timestamps: Example

h 1 k
( N\
Process 1 (Ls = max(2, 1+1) //5 .6_>
c / g
Process 2 O -
a h
Process 3 - 1 ! >
1 2 3 4
e ] l
Process 4 ! “ - >
1 2 3

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207




6.3 Logical Clocks ... d

Lamport Timestamps: Example

b - { k
Process 1 * (Ls =max(3, 1+1) *—>
s

Process 2 o/ /4 -
h

Process 3 / -
J l

Process 4 - - >
2 3

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207




6.3 Logical Clocks ... d

Lamport Timestamps: Example

i k

b
- L —
1 5 6
c g \
Process 2 O -
-]\ 2 \
d h
Process 3 col 1 !
1 2
e
1

Process 1

> Ly = max(2, 4+1))
1 J l

@ -

O
2 3

Process 4

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207




6.3 Logical Clocks ... d

Lamport Timestamps: Example

Process 1

b
O
1
C g
Process 2 O -
d h
Process 3 col 1 ! >
1 2
e
1

Process 4

= Among others, we have here:
w ¢ — kand L(c) < L(k)
= g /> jand L(g) £ L(j)
- g /A1, butstill L(g) < L(1)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 207




6.3 Logical Clocks ... d

Vector Timestamps

= (Objective: timestamps that characterize causality

- a—>b < V(a) < V(b), where V is the vector timestamp
In the respective process

= A vector clock in a system with IN processes is a vector of IN
Integers

= each process has its own vector V;

= V;[¢]: number of events that have occurred so far in process %

= V;l7],7 # ¢: number of events in process j, of which ¢ knows
= j.e. by which it could have been causally influenced

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 208




6.3 Logical Clocks ... d

Vector Timestamps ...

= Update of V; in process #:
= pbefore any local event: V;[¢] = V;[i] + 1
= V; is included in every message sent
= Wwhen receiving a message with timestamp t¢:
Vilg] = max(V;[g], t[g]) forall j =1,2,..., N

= Comparison of vector timestamps:

-V =V' <& V[j]=V’[y] forall  =1,2,...,N
w VIV & V[ <V forall j =1,2,...,N
w V<V & VIV AV AV
= the relation < defines a partial order
g = Eg{ﬁggsvs\/)igg[girjrlllgr/ verteilte Systeme Distributed Systems (8/15) 209




6.3 Logical Clocks ... d

Vector Timestamps: Example

Process 1 10)(1’0’0’0) . E—»
. /’ 2141) G141)
Process 2 o 0:1,0.0) o!2:2:0.0) -
(0,1,3,1) (0,1,4,1)
e J l
Process 4 - - -
(0,0,0,1) (0,0,0,2) (0,0,0,3)

=*===* Roland Wismller .
Z1F_I= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 210



6.3 Logical Clocks ... d

Vector Timestamps: Example

hisona i k
Process 1 —(Vz = max((0,0,2,0), (0,1,0 O))) (2,1,4,1) (3,1,4,1)
c(0100) | £0.20,)

Process 2 0\4( -
,/
Process 3 2 (0,0,1,0) 0,1,2, 0

(0,1,3 1) (0,1,4,1)
e l

(0,0,0,1) (o,o,o,z) %0003

Y

Process 4

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 210



6.3 Logical Clocks ... d

Vector Timestamps: Example

hiinnn 7 k
Process 1 k\/z — maX((O 1,3 O) (O 0,0 1)) 4 1) (31 4 1)
8
ProceSS 2 ¢ (051!0!0) !2!0!0) / -
0,1,31) (0,1,4,1)
Process 4 “ ® -
(0,0,0,1) (0,0,0,2) (0,0,0,3)

=*===* Roland Wismller .
Z1F_I= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 210



6.3 Logical Clocks ... d

Vector Timestamps: Example

b .
Process 1 - (1,0,0,0 . E—»
. /’ 2147 G141
ProceSS 2 ¢ (051!0!0) .(0!2!0!0) % -
(0,1,3,1) (0,1,4,1)
4 e
Process 4 V= max((2,0,0,0), (0,1,4,1))
(0,0,0,1) k \U,U,V,ﬁ, ‘V,U,U,U, )

=*===* Roland Wismller .
Z1F_I= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 210



6.3 Logical Clocks ... d

Vector Timestamps: Example

Process 1 10)(1’0’0’0) . E—»
. /’ 2141) G141)
Process 2 o 0:1,0.0) o!2:2:0.0) -
(0,1,3,1) (0,1,4,1)
e J l
Process 4 - - -
(0,0,0,1) (0,0,0,2) (0,0,0,3)

= Among others, we have here:
w c— kand V(c) < V (k)
w gAlandV(g) L V(I),aswellasl A gand V(l) £ V(g)
= V(1) and V' (g) not comparable <- [ and g concurrent

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 210



6.4 Global State [I

A Motivating Example

= Scenario: peer-to-peer application, processes send requests to
each other

= Question: when can the application terminate?

= Answer: when no process is processing a request

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 211



6.4 Global State ['

A Motivating Example

= Scenario: peer-to-peer application, processes send requests to
each other

= Question: when can the application terminate?

= \Wrong answer: when no process Is processing a request
= reason: requests can still be on the way in messages!

Process 1 Process 2

Request
-

= QOther applications: distributed garbage collection, distributed
deadlock detection, ...

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 211




6.4 Global State ... "

= How can we determine the overall state of a distributed process
system?

= naively: union of the states of all processes (wrong!)

= Two aspects have to be considered:
= messages that are still in transit
= must be included in the state

= |ack of global time

= 3 global state at time ¢t cannot be defined!

= process states always refer to local (and thus different)
times
= question: condition on local times? =- consistent cuts

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 212




6.4 Global State ... "

Consistent Cuts

= Objective: build a meaningful global state from local states (which
are not determined simultaneously)

= Processes are modeled by sequences of events:

Process 1 ® O / Q\ —
Process 2 = - = O -
@ @ \. @ -

Process 3 -

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 213




6.4 Global State ... ‘I

Consistent Cuts

= Objective: build a meaningful global state from local states (which
are not determined simultaneously)

= Processes are modeled by sequences of events:

Process 1 \Q O / ( \\ *——
Process 2 Q’ o { \ s

@ ® N \. \ @

7
Cut Cut Cut Cut

Y

Process 3

= Cut: consider a prefix of the event sequence in each process

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 213




6.4 Global State ... ‘I

Consistent Cuts

= Objective: build a meaningful global state from local states (which
are not determined simultaneously)

= Processes are modeled by sequences of events:
Process 1 \Q O / ( \\ *——
Process 2 Q’ ° < \ s -

@ ® N \. \ @

o / |

Process 3

Consistent cuts Inconsistent cut

= Cut: consider a prefix of the event sequence in each process

w Consistent cut:

= if the cut contains the reception of a message, it also contains
the sending of this message

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 213




6.4 Global State ... "

The Snapshot Algorithm of Chandy and Lamport

= Determines online a “snapshot” of the global state
= j.e.. a consistent cut

= The global state consists of:
= the local states of all processes

w the status of all communication connections
= |.e. the messages in transmission

= Assumptions / properties:

= reliable message channels with sequence retention
= process graph is strongly connected

= each process can trigger a snapshot at any time

= the processes are not blocked during the algorithm

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 214




6.4 Global State ... "

The Snapshot Algorithm of Chandy and Lamport ...

= \When a process wants to initiate a snapshot:
= process first saves its local state

= then it sends a marker message over each outgoing channel

= \When a process receives a marker message:

= if it has not yet saved its local state:

= |t saves its local state
= and sends a marker over each outgoing channel

- glse:

= for the channel where the marker was received, it saves all

messages that have been received since the local state
was saved

= |.e., it records the status of the channel

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 215




6.4 Global State ... ‘I

The Snapshot Algorithm of Chandy and Lamport ...
= The algorithm terminates when each process has received a
marker message on each channel

= the determined consistent section is then (initially) stored in a
distributed way

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 216



6.4 Global State ... ‘I

Example for the algorithm

of Chandy/Lamport P1
[ \
a =
e
.

P2
[
—

=*===* Roland Wismller .
Z1#_I* Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 217



6.4 Global State ... ‘I

Example for the algorithm

of Chandy/Lamport P1
M/ E M
_ @E
. e
P2
-

(] d
=

1. P1 initiates a snapshot, saves its state, and sends markers

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 217



6.4 Global State ... ‘I

Example for the algorithm

of Chandy/Lamport P1
_— E M
M
Eﬁ@
e

P2

111 d@
]

1. P1 initiates a snapshot, saves its state, and sends markers
2. P3 receives a marker from P1, saves Iits state, and sends markers

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 217



6.4 Global State ... ‘I

Example for the algorithm

of Chandy/Lamport P1
_— E M
M
Eﬁ@
e

P2

KT d@
]

1. P1 initiates a snapshot, saves its state, and sends markers
2. P3 receives a marker from P1, saves its state, and sends markers
3. P2 receives and processes a

ET5=7" Roland Wismdiller istri
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 217



6.4 Global State ... ‘I

Example for the algorithm

of Chandy/Lamport P1
/ R Y
M
Eﬁ@
e

P2 M

11 S M @
il

1. P1 initiates a snapshot, saves its state, and sends markers
2. P3 receives a marker from P1, saves its state, and sends markers

3. P2 receives and processes a
P2 receives the marker from P1, saves its state, and sends markers

ET5=7" Roland Wismdiller istri
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 217



6.4 Global State ... "

Example for the algorithm

of Chandy/Lamport Pl \=—
. / P \{4

e
~
P2 M -

d v e
-

1. P1 initiates a snapshot, saves its state, and sends markers
2. P3 receives a marker from P1, saves its state, and sends markers
3. P2 receives and processes a

P2 receives the marker from P1, saves its state, and sends markers
4. P1, P2, P3 save the incoming messages, until all markers are received

ET5=7" Roland Wismdiller istri
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 217




6.4 Global State ... "

Example for the algorithm

of Chandy/Lamport Pl \=—
Fey \
8@
b P3
i
P2
1 e

8 clid
1. P1 initiates a snapshot, saves its state, and sends markers

2. P3 receives a marker from P1, saves its state, and sends markers
3. P2 receives and processes a

P2 receives the marker from P1, saves its state, and sends markers
4. P1, P2, P3 save the incoming messages, until all markers are received

ET5=7" Roland Wismdiller istri
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 217




6.4 Global State ... ‘I

Sequence in the Example and Selected Cut

displayed initial state

P1 '\E -

P3

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 218



6.4 Global State ... ‘I

Sequence in the Example and Selected Cut

P1 e -

P2 III\‘VII h 1
D 4’7

) |
o — =

consistent cut determined by the algorithm

T
ina -

w The cut consists of the local states of P1, P2, P3 and the
messages b, ¢, d, e

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (8/15) 218



	6  Time and Global State
	6.1  Synchronizing Physical Clocks
	6.2  Lamport's Happened-Before Relation
	6.3  Logical Clocks
	6.4  Global State


