
Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (1/15) i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: November 28, 2024

Distributed Systems

Winter Term 2024/25

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 173

Distributed Systems
Winter Term 2024/25

5 Process Management

5 Process Management ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 174

Contents

➥ Distributed process scheduling

➥ Code migration

Literature

➥ Tanenbaum, van Steen: Ch. 3

➥ Stallings: Ch. 14.1

5 Process Management ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 175

5.1 Distributed Process Scheduling

➥ Typical: middleware component that

➥ decides on which node a process is executed

➥ and probably migrates processes between nodes

➥ Gloals:

➥ balance the load between nodes

➥ maximize the system performance (average response time)

➥ also: minimize the communication between nodes

➥ meet special hardware / resource requirements

➥ Load: typically the length of the process queue (ready queue)

➥ sometimes resource consumption and communication volume

are considered, too

5.1 Distributed Process Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 176

Approaches to distributed scheduling

➥ Static scheduling

➥ mapping of processes to nodes is defined before execution

➥ NP-complete, therefore heuristic methods

➥ Dynamic load balancing, two variants:

➥ execution location of a process is defined during creation and

is not changed later

➥ execution location of a process can be changed at runtime

(several times, if necessary)

➥ preemptive dynamic load balancing, process migration

5.1 Distributed Process Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 177

5.1.1 Static Scheduling

➥ Procedure dependent on the structure / the modelling of a job

➥ jobs always consist of several processes

➥ differences in communication structure

➥ Examples:

➥ communicating processes: graph partitioning

➥ non-communicating tasks with dependencies: list scheduling

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 178

Scheduling through graph partitioning

➥ Given: process system with

➥ CPU / memory requirements

➥ specification of communication load

between each pair of processes

usually represented as a graph

6
4

8
1

4
3

2

3 2
3

55
1

2

4 2
G

E

A B C

F

IH

D

➥ Wanted: partitioning of the graph in such a way that

➥ CPU and memory requirements are met for each node

➥ partitions are about the same size (load balancing)

➥ weighted sum of cut edges is minimal

➥ i.e. as little communication as possible between nodes

➥ NP-complete, therefore many heuristic procedures

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 178

Scheduling through graph partitioning

➥ Given: process system with

➥ CPU / memory requirements

➥ specification of communication load

between each pair of processes

usually represented as a graph

= 30

2
3

1

6
4

8
1

4
3

2

3 2
3

55
1

2

4 2
G

E

A B C

F

IH

D

➥ Wanted: partitioning of the graph in such a way that

➥ CPU and memory requirements are met for each node

➥ partitions are about the same size (load balancing)

➥ weighted sum of cut edges is minimal

➥ i.e. as little communication as possible between nodes

➥ NP-complete, therefore many heuristic procedures

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 178

Scheduling through graph partitioning

➥ Given: process system with

➥ CPU / memory requirements

➥ specification of communication load

between each pair of processes

usually represented as a graph

= 27

2
3

1

6
4

8
1

4
3

2

3 2
3

55
1

2

4 2
G

E

A B C

F

IH

D

➥ Wanted: partitioning of the graph in such a way that

➥ CPU and memory requirements are met for each node

➥ partitions are about the same size (load balancing)

➥ weighted sum of cut edges is minimal

➥ i.e. as little communication as possible between nodes

➥ NP-complete, therefore many heuristic procedures

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (6/15) 179

List scheduling

➥ Tasks with dependencies, but without communication during

execution

➥ tasks work on results of other tasks

➥

D 6 E 6 F 4

G 4

A 6 B 5 C 4

1

21
1

333

4
1

Modelling

➥ program represented as a DAG

➥ nodes: tasks with execution times

➥ edges: communication with transfer

time

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) viii

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: November 28, 2024

Distributed Systems

Winter Term 2024/25

21.11.2024

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 180

Method

➥ Create prioritized list of all tasks

➥ many different heuristics to determine the priorities, e.g.

according to:

➥ length of the longest path (without communication) from the

node to the end of the DAG (High Level First with Estimated
Time, HLFET).

➥ earliest possible start time (Earliest Task First, ETF)

➥ Process the list as follows:

➥ assign the first task to the node that allows the earliest start

time

➥ remove the task from the list

➥ Creation and processing of the list can also be interleaved

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6+5+4 = 15
Static level (without comm.):

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6+5+4 = 15
Static level (without comm.):

6+6+4 = 16

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFDEBCA

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFDEBCA

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFDEBC

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFDEB

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFDE

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFDE

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFDE

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4 6E

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFDE

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFD

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E D 5

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFD

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E

D 5

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFD

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E

D 5

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GFD

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E

D 5

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: GF

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E

D 5

4F

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List: G

➥ Assumption: local communication does not cost any time

5.1.1 Static Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 181

Example: List Scheduling with HLFET

6A

C 4

B 4

6E

D 5

4F

G 4

Schedule with 3 nodes:

0 2 4 6 8 10 12 14 16

1

2

3

A 6 C 4

D 5 F 4

G 4

E 6

B 4

2

1 3

1 1

4
1

5 3

16

4

9 10 8

1413 List:

➥ Assumption: local communication does not cost any time

5.1 Distributed Process Scheduling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 182

5.1.2 Dynamic Load Balancing

➥ Components of a load balancing system

➥ Information policy – when is load balancing triggered?

➥ on demand, periodically, in case of state changes, ...

➥ Transfer policy – under which condition is load shifted?

➥ often: decision with the help of threshold values

➥ Location policy – how is the receiver (or sender) found?

➥ polling of some nodes, broadcast, ...

➥ Selection policy – which tasks are moved?

➥ new tasks, long tasks, location-independent tasks, ...

5.1.2 Dynamic Load Balancing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 183

Typical approaches to dynamic load balancing

➥ Sender initiated load balancing

➥ new process usually start on the local node

➥ if node is overloaded: determine load of other nodes and start
process on low-loaded node

➥ e.g. ask randomly selected nodes for their load, send
process if load ≤ threshold, otherwise: next node

➥ disadvantage: additional work for already overloaded node!

➥ Receiver initiated load balancing

➥ when scheduling a process: check whether the node has still
enough work (processes)

➥ if not: ask other nodes for work

➥ Similar also for preemptive dynamic load balancing

5 Process Management ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 184

[Tanenbaum/Steen, 3.4]
5.2 Code Migration

➥ In distributed systems, in addition to data also programs are
transfered between nodes

➥ partly also during their execution

➥ Motivation: performance and flexibility

➥ preemptive dynamic load balancing

➥ optimization of communication (move code to data or highly

interactive code to client)

➥ increased availability (migration before system maintenance)

➥ use of special HW or SW resources

➥ use / evacuation of unused workstation computers

➥ avoid code installation on client machines (dynamic loading of

code from server)

5.2 Code Migration ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 185

Models for Code Migration

➥ Conceptual model: a process consists of three “segments”:

➥ code segment

➥ the executable program code of the process

➥ execution segment

➥ complete execution status of the process
➥ virtual address space (data, heap, stack)
➥ processor register (incl. instruction counter)

➥ process / thread control block

➥ resource segment

➥ contains references to external resources required by the

process
➥ e.g. files, devices, other processes, mailboxes, ...

5.2 Code Migration ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 186

Models for Code Migration ...

➥ Weak mobility

➥ only the code segment is transferred

➥ including initialization data if necessary

➥ program is always started from initial state

➥ examples: remotely loaded classes in Java, Java Script

➥ Strong mobility

➥ code and execution segment are transferred

➥ migration of a process in execution

➥ examples: process migration, agents

➥ Sender- or receiver-initiated migration

5.2 Code Migration ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 187

Code Migration Issues and Solutions

➥ Security: target computer executes unknown code

➥ restricted environment (sandbox)

➥ signed code

➥ Heterogeneity: code and execution segment depend on CPU and
operating system

➥ use of virtual machines (e.g. JVM, XEN)

➥ migration points at which state can be stored and read in a
portable way (possibly supported by compiler)

➥ Access to (local) resources

➥ remote access with a global reference

➥ move or copy the resource

➥ new binding to resource of the same type

5.2 Code Migration ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 188

[Stallings, 14.1]
Process migration

➥ Migration of a process that is already running

➥ triggered by OS or the process itself

➥ mostly for dynamic load balancing

➥ Sometimes combined with checkpoint /restart function

➥ instead of transferring the status of the process, it can also be

stored persistently

➥ Design goals of migration procedures:

➥ low communication effort

➥ only short blocking of the migrated process

➥ no dependency on source computer after migration

5.2 Code Migration ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 189

Process Flow of a Process Migration

➥ Creating a new process on the target system

➥ Transfer the code and execution segment (process address

space, process control block), initialization of the target process

➥ required: identical CPU and OS or virtual machine

➥ Update all connections to other processes

➥ communication links, signals, ...

➥ during migration: buffering at source

➥ then: forwarding to target computer

➥ Delete the original process

➥ if necessary, retain a “shadow process” for redirected system

calls, e.g. file accesses

5.2 Code Migration ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 190

Transferring the process address space

➥ Eager (all): transfer the entire address space

➥ no traces of the process remain on source nodes

➥ very expensive for large address space (especially if not all

pages are used)

➥ often together with checkpoint/restart function

➥ Precopy : process continues to run on source node during

transfer

➥ to minimize time in which the process is blocked

➥ pages modified while the migration is in progress must be sent

again

5.2 Code Migration ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (7/15) 191

Transferring the process address space ...

➥ Eager (dirty): transfer only modified pages that are in main
memory

➥ all other pages are only transferred when accessed

➥ integration with virtual memory management

➥ motivation: quickly “flush” main memory of the source node

➥ source node may remain involved until the end of the process

➥ Copy-on-reference: transfer each page only when accessed

➥ variation of eager (dirty)

➥ lowest initial costs

➥ Flushing: move all pages to disk before migration

➥ after that: copy-on-reference

➥ advantage: main memory of the source node is relieved

	5 Process Management
	5.1 Distributed Process Scheduling
	5.1.1 Static Scheduling
	5.1.2 Dynamic Load Balancing

	5.2 Code Migration

