
Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (1/15) i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 24, 2024

Distributed Systems

Winter Term 2024/25

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 49

Distributed Systems
Winter Term 2024/25

2 Middleware

2 Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 50

Content

➥ Communication in distributed systems

➥ Communication-oriented middleware

➥ Application-oriented middleware

Literature

➥ Hammerschall: Ch. 2, 6

➥ Tanenbaum, van Steen: Ch. 2

➥ Colouris, Dollimore, Kindberg: Ch. 4.4

2 Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 51

Netw.

Distributed application (DA)

Distributed system (DS)

DADA

DS nodeDS node

component component

➥ DA uses DS for communication between its components

➥ DSs generally only offer simple communication services

➥ direct use: network programming

➥ Middleware offers more intelligent interfaces

➥ hides details of network programming

2 Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 51

Netw.

DA

Middleware

DA

Middleware
component

DS node DS node

Distributed system (DS)

Distributed application (DA)

component

Netw.

Distributed application (DA)

Distributed system (DS)

DADA

DS nodeDS node

component component

➥ DA uses DS for communication between its components

➥ DSs generally only offer simple communication services

➥ direct use: network programming

➥ Middleware offers more intelligent interfaces

➥ hides details of network programming

2 Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 52

➥ Middleware is the interface between distributed application and

distributed system

➥ Goal: hide distribution aspects from application

➥ transparency (☞ 1.3)

➥ Middleware can also provide additional services for applications

➥ huge differences in existing middleware

➥ Distinction:

➥ communication-oriented middleware (☞ 2.2)

➥ (only) abstraction from network programming

➥ application-oriented middleware (☞ 2.3)

➥ besides communication, the focus is on support of

distributed applications

2 Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 53

2.1 Communication in Distributed Systems

➥ Basis: interprocess communication (IPC)

➥ exchange of messages between processes (☞ BS I: 3.2)

➥ on the same or on different nodes

➥ e.g. via ports, mailboxes, streams, ...

➥ For distribution: network protocols (☞ RN I)

➥ relevant topics etc: addressing, reliability, guaranteed ordering,

timeouts, acknowledgements, marshalling

➥ Interface for network programming: sockets (☞ RN II)

➥ datagrams (UDP) and streams (TCP)

2.1 Communication in Distributed Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 54

Synchronous Communication

➥ ReceiverSender

bl
oc

ke
d

reply

request

ac
tiv

e

Time

Sender and receiver block when

calling a send or receive operation

➥ receiver is waiting for a request

➥ sender is waiting for the reply

➥ Tight coupling between sender and

receivers

➥ advantage: easy to understand model

➥ disadvantage: strong dependency, especially in case of error

➥ Prerequisites:

➥ reliable and fast network connection

➥ receiver process is available

2.1 Communication in Distributed Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 55

Asynchronous Communication

➥ Receiver

ac
tiv

e

Sender

ac
tiv

e

request

Time

Sender is not blocked, can continue

immediately after sending the message

➥ Incoming messages are buffered at the

receiver

➥ Answers are optional

➥ receiver can reply asynchronously to

the sender

➥ More complex implementation and use as with synchronous

communication, but usually more efficient

➥ Only loose coupling between the processes

➥ receiver does not have to be ready for reception

➥ less dependent in case of errors

2.1 Communication in Distributed Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 56

Client/Server Communication

operation

reply
message

ServerClient

request

message
determine
request

send answer

select object, if needed

execute

(wait)

(continue)

execute method

➥ Mostly synchronous: client blocked until response arrives

➥ Variants: asynchronous (non blocking), one way (without answer)

2.1 Communication in Distributed Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 56

Client/Server Communication

getRequest()

sendReply()

d
o
O
p
e
r
a
t
i
o
n
(
)

operation

reply
message

ServerClient

request

message
determine
request

send answer

select object, if needed

execute

(wait)

(continue)

execute method

➥ Mostly synchronous: client blocked until response arrives

➥ Variants: asynchronous (non blocking), one way (without answer)

2.1 Communication in Distributed Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 57

Client/Server Communication: Request/Response Protocol

➥ Typical operations:

➥ doOperation() – send request and wait for result

➥ getRequest() – wait for request

➥ sendReply() – send result

➥ Typical message structure:

messageType
requestID
objectReference
methodID
arguments

request / reply ?
unique ID of request (usually int)
reference to remote object (if needed)
method to be called (int / String)
arguments (usually as Byte array)

➥ request ID + sender ID result in unique message ID

➥ e.g. to map an answer to its query

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) iv

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 24, 2024

Distributed Systems

Winter Term 2024/25

24.10.2024

2.1 Communication in Distributed Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 58

Client/Server Communication: Error Handling

➥ Request and/or response messages may be lost

➥ Client sets a timeout when sending a request

➥ after expiration, request is usually sent again

➥ after a few repetitions: termination with exception

➥ Server discards duplicate requests if request has already been /

is still being processed

➥ For lost response messages:

➥ idempotent operations can be executed again

➥ otherwise: save results of operations in a history

➥ for repeated request: only resend the result

➥ delete history entries when next request arrives; if

necessary confirmations for results can also be used

2.2 Communication-oriented Middleware

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 59

➥ Focus: provision of a communication infrastructure for distributed

applications

➥ Tasks:

➥ communication

➥ dealing with heterogeneity

➥ error handling

Application

Communication oriented

Operating system / distributed system

middleware

2.2.1 Tasks of the Middleware

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 60

Communication

➥ Provision of a middleware protocol

➥ Localization and identification of communication partners

➥ Integration with process and thread management

Transport protocol (e.g. TCP)

Middleware protocol

Application protocol

Lower layers of the protocol stack

2.2.1 Tasks of the Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 61

Heterogeneity

➥ Problem with data transmission:

➥ heterogeneity in distributed systems

➥ Heterogeneous hardware and operating systems

➥ different byte order

➥ little endian vs. big endian

➥ different character encoding

➥ e.g.. ASCII / Unicode / UTF-8 / UTF-16

➥ Heterogeneous programming languages

➥ different representation of simple and complex data types in

the main memory

2.2.1 Tasks of the Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 62

Heterogeneity: Solutions (☞ RN I)

➥ Use of generic, standardized data formats

➥ known to all communication partners and middleware

➥ platform-specific formats for middleware (e.g. CDR for

CORBA) or external formats, e.g. XML

➥ Heterogeneity of hardware and operating system

➥ is handled transparently for the applications by the middleware

➥ Heterogeneity of programming languages

➥ applications need to convert data to higher-level format and

back (marshaling / unmarshaling)

➥ necessary code is usually generated automatically

➥ client stub / server skeleton

2.2.1 Tasks of the Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 63

Error Handling

➥ Possible errors due to distribution

➥ incorrect transmission (incl. loss of messages)

➥ handled by the protocols of the distributed system:

➥ checksums, CRC
➥ retransmission of packets (e.g. TCP)

➥ failure of components (network, hardware, software)

➥ handled by middleware or application:

➥ acceptance of the error
➥ retransmission of messages

➥ replication of components (error avoidance)

➥ controlled termination of the application

2.2 Communication-oriented Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 64

2.2.2 Programming Models

➥ Programming model defines two concepts:

➥ communication model

➥ synchronous vs. asynchronous

➥ programming paradigm

➥ object-oriented vs. procedural

➥ Three common programming models for middleware:

➥ message-oriented model (asynchronous / arbitrary)

➥ remote procedure call (synchronous / procedural)

➥ remote method invocation (synchronous / object-oriented)

2.2.2 Programming Models ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 65

Message-Oriented Model

➥ Sender puts message in receiver’s queue

Sender

Message

Message queue

Message

Receiver

➥ Receiver accepts message as soon as he is ready

➥ Extensive decoupling of transmitter and receiver

➥ No method or procedure calls

➥ data is packed and sent by the application

➥ no automatic reply message

2.2.2 Programming Models ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 66

Remote Procedure Call (RPC)

➥ Allows a client to call a procedure in a remote server process

...
P(a) {

return b;
}

y = P(x);
Input parameters

process
Client

process
Server

Results

➥ Communication according to request / response principle

Remote Method Invocation (RMI)

➥ Allows an object to call methods of a remote object

➥ In principle very similar to RPC

2.2.2 Programming Models ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 67

Common Basic Concepts of Remote Calls

➥ Client and server are decoupled by interface definition

➥ defines names of calls, parameters and return values

➥ Introduction of client stubs and server skeletons as an access

interface

➥ are automatically generated from interface definition

➥ IDL compiler (IDL = interface definition language)

➥ are responsible for marshaling / unmarshaling

as well as for the actual communication

➥ realize access and location transparency

2.2.2 Programming Models ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 68

How Client Stub and Server Skeleton Work (RPC)

Client stub Server skeleton

P(a) {y=P(x)

...
P(a) {

return b;
}

; ;

Client process

return b;
}

receive(m1);

client=sender(m1);

unpack argument x
from message

y = P(x)

}

pack argument a
into message

send(Server, m1);

receive(Server, m2)

unpack result b
from message

while (true) {

send(Client, m2);

pack result y

Server process

into message

2.2.2 Programming Models ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 69

Basis of RMI: The Proxy Pattern

➥ Client works with a deputy object (proxy) of the actual server

object

➥ proxy and server object implement the same interface

➥ client only knows / uses this interface

Client Proxy Object

Interface
<<interface>>

2.2.2 Programming Models ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 70

Flow of a Remote Method Call

Proxy

Skeleton calls
the same
method on
the object

Client−OS

Client

Network

Server−BS

Server

Skeleton

Server nodeClient node

Object

Status

Method

Same interface
as real object

Interface

Client calls
a method

Packed request is sent over the network
(object ID, method name, parameters)

2.2.2 Programming Models ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 71

Creation of a Client/Server Program

Server

Client

Compiler

Compiler

Client stubs

IDL
compiler

Server skel.

Runtime
RPC/RMI

Server
procedures

Client

library

Interface
description

program

➥ Applies in principle to all realizations of remote calls

2.2 Communication-oriented Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 72

2.2.3 Middleware Technologies

➥ Realize (at least) one of the programming models

➥ rely on open standards / standardized interfaces

➥ Remote procedure call

➥ SUN RPC, DCE RPC, Web Services, ...

➥ Remote method invocation

➥ Java RMI (☞ 3), CORBA, ...

➥ Message-oriented middleware technologies

➥ MOM: message oriented middleware, messaging systems

➥ mainly for EAI

➥ Java Message Service, WebSphereMQ (MQSeries), ...

2.2 Communication-oriented Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 73

2.2.4 Message Oriented Middleware (MOM)

➥ Middleware technology for the message-oriented model

➥ In addition to message exchange also other services, especially

queue management

interface
Access

interface
Access

Sender ReceiverMessage queues

Message queue
manager

Protocol stack

Middleware protocol (proprietary)

2.2.4 Message Oriented Middleware (MOM) ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 74

Message Queue Infrastructure

➥ Access to queues is only possible locally

➥ local: same computer or same subnet

➥ Transport of messages across subnet boundaries by queue

administrators (routers)

Manager Manager

Manager

Sender Receiver

ReceiverSender

2.2.4 Message Oriented Middleware (MOM) ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 75

Variants of message exchange

➥ Point-to-point communication

➥ communication between two defined processes

➥ simplest model: asynchronous communication

➥ enhancement: request/reply model

➥ enables synchronous communication via asynchronous
middleware

➥ Broadcast communication

➥ Message is sent to all reachable receivers

➥ one implementation: publish/subscribe model

➥ publishers publish messages/news on a topic

➥ subscribers subscriber to certain topics

➥ mediation via a broker

2.2.4 Message Oriented Middleware (MOM) ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 76

Example: Java Message Service

➥ Part of the Java Enterprise Edition (Java EE)

➥ Unified Java interface for MOM services

➥ Distinguishes two roles:

➥ JMS provider: the respective MOM server

➥ JMS client: sender or receiver of messages

➥ JMS supports:

➥ asynchronous point-to-point communication

➥ request/reply model

➥ publish/subscribe model

➥ JMS defines corresponding access objects and methods

2.2 Communication-oriented Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 77

2.2.5 Summary

➥ Tasks: Communication, dealing with heterogeneity, error handling

➥ Programming models:

➥ message-oriented model (asynchronous)

➥ basis: message queues

➥ refinements:
➥ request/reply model (synchronous)

➥ publish/subscribe model (broadcast)

➥ remote procedure or method calls

➥ synchronous: request and response

➥ generated stubs for (un-)marshaling

2.3 Application-oriented Middleware

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 78

➥ Based on communication-oriented middleware

➥ Extends it by:

➥ runtime environment

➥ services

➥ component model

Runtime environment ServicesServices

Component model

Communication infrastructure

Operating system / distributed system

component
Application

component component
Application Application

2.3.1 Runtime environment

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 79

➥ Based on node operating systems of the distributed system

➥ Operating system (OS) manages processes, memory, I/O, ...

➥ provides basic functionality

➥ starting / stopping processes, scheduling, ...

➥ interprocess communication, synchronization, ...

➥ Runtime environment extends functionality of the OS:

➥ improved resource management

➥ e.g. concurrency, connection management

➥ improved availability

➥ improved security mechanisms

2.3.1 Runtime environment ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 80

Resource management

➥ Middleware goes beyond simple OS functionality

➥ e.g. independently managed main memory areas with

individual security criteria

➥ pooling of processes, threads, connections

➥ are created for stock and made available as required

➥ possible, since middleware is specific to certain classes of

applications

➥ Goal: improved performance, scalability and availability

2.3.1 Runtime environment ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 81

Concurrency

➥ Concurrency in this context:

➥ isolated parallel processing of requests

➥ Concurrency can be implemented via processes or threads

➥ threads (lightweight processes): concurrent activities within

processes

➥ threads in the same process share all resources

➥ advantages and disadvantages:

➥ processes: high resource requirements, not well scalable,

good protection, with low concurrency

➥ threads: well scalable, no mutual protection, with high

concurrency

2.3.1 Runtime environment ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 82

Concurrency ...

➥ Middleware takes over automatic generation / administration of
threads in the case of concurrent orders, e.g.

➥ single-threaded

➥ only one thread, sequential processing

➥ thread-per-request

➥ a new thread is created for each request

➥ thread-per-session

➥ a new thread is created for each session (client)

➥ thread pool

➥ fixed number of threads, incoming requests are distributed
automatically

➥ saves thread generation costs
➥ limits resource consumption

2.3.1 Runtime environment ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 83

Connection management

➥ Connection here means: endpoints of communication channels

➥ occur at tier boundaries (between process spaces)

➥ e.g. client/server interface, database access

➥ are assigned to a process/thread, if in the active state

➥ require resources (memory, processor time)

➥ opening and closing connections is costly

➥ To save resources: pooling of connections

➥ connections are initialized to stock and placed in pool

➥ each thread/process receives a connection on demand

➥ after use: return connection to pool

2.3.1 Runtime environment ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 84

Availability

➥ Requirement to the application,

but mainly implemented by the runtime environment

➥ Downtimes are caused by

➥ failure of a hardware or software component

➥ overload of a hardware or software component

➥ maintenance of a hardware or software component

➥ Frequent technology for ensuring availability: cluster

➥ replication of hardware and software

➥ cluster appears externally as one unit

➥ two types: fail-over cluster / load-balancing cluster

2.3.1 Runtime environment ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 85

Security

➥ Distributed applications are vulnerable due to their distribution

➥ Middleware supports different security models

➥ Security requirements:

➥ authentication:

➥ proves the identity of the user / a component

➥ e.g. by password query (for users) or cryptographic

techniques and certificates (for components)

➥ authorization:

➥ definition of access rights for users to specific services

➥ or more fine grained: methods and attributes

➥ requires secure authentication

2.3.1 Runtime environment ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 86

Security ...

➥ Security requirements ...:

➥ confidentiality

➥ information cannot be intercepted during transmission in

the network
➥ technique: encryption

➥ integrity

➥ transmitted data cannot be changed without being noticed

➥ techniques: cryptographic checksum (message digest,

fingerprint), digital signature

➥ digital signature also ensures authenticity of the sender

2.3.1 Runtime environment ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 87

Security ...

➥ Security mechanisms:

➥ encryption

➥ symmetric (e.g. AES, IDEA)
➥ same key for encryption and decryption

➥ asymmetric (public key algorithms, e.g. RSA)
➥ public key for encryption
➥ private key for decrypting

➥ digital signature

➥ ensures integrity of a message and authenticity of the
sender as well as nonrepudiation

➥ certificate
➥ certifies that public key and person (or component) belong

together

2.3.2 Services

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 88

Name service (directory service) (☞ 4)

➥ Publication of available services

➥ in the intranet or Internet

➥ Assignment of names to references (addresses)

➥ name serves as a unique / unchangeable identifier

➥ the client can request the address of a service via its name

➥ address can change e.g. at restart

➥ goal: decoupling of client and server

➥ Examples: JNDI, RMI registry, CORBA interoperable naming

service, UDDI registry, LDAP server, Active Directory, ...

2.3.2 Services ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 89

Session management

➥ In interactive systems: each instance of a client is assigned its
own session

➥ deleted when logging out or closing the client

➥ Session stores all relevant data (in main memory)

➥ e.g. identification of the user, browser type, ”‘shopping cart”’, ...

➥ data stored in the server or in the client

➥ transient data: deleted at the end of the session

➥ persistent data: is written to a data carrier (database) at the
end of the session.

➥ Middleware implements/supports the assignment of requests to
sessions (often transparent)

➥ e.g. cookies, HTTP-sessions, session beans, ...

2.3.2 Services ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 90

Transaction management (☞ 7.4)

➥ Service for interactive, data-centric applications

➥ consistency / integrity of data is important

➥ this means that the entire (maybe distributed) dataset must

represent a valid state in itself

➥ Typical sequence in applications:

1. client requests data

2. client changes the data

3. client requests that the data be rewritten

➥ problem: steps 1-3 could be performed by two clients at the

same time

➥ Transaction management allows execution of a sequence of
actions as an atomic unit

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (4/15) v

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 24, 2024

Distributed Systems

Winter Term 2024/25

31.10.2024

2.3.2 Services ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (4/15) 91

Persistence service

➥ Persistence: all measures for the permanent storage of main

memory data

➥ Persistence service: intelligent interface to the database

➥ integrated in middleware or as an independent component

➥ most important service for data-centered applications besides
transaction management

➥ Most common type: object-relational mapper (OR-Mapper)

➥ maps objects in memory to tables in a relational database

➥ class → table
➥ attribute → column
➥ object → row

➥ mapping rules are controlled by application developer

2.3.2 Services ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (4/15) 92

Persistence service ...
(m

ai
n

m
em

or
y)

(d
at

a
ba

se
)

O
bj

ec
t m

od
el

R
el

at
io

na
l m

od
el

OR mapper

1
*

1

1
Var4
Var5

Var6
Var7

Var1 Var2 Var3
Table A

Ref Var7Var6Var4
Table BC
Var5

Var2
Var3

Var1

A

B

C

2.3.3 Component model

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (4/15) 93

➥ Components: “large” objects for structuring applications

➥ A component model defines:

➥ the term “component”

➥ structure and properties of the components

➥ mandatory and optional interfaces

➥ interface contracts

➥ how do components interact with each other and with the

runtime environment?

➥ component runtime environment

➥ management of the life cycle of components

➥ implicit provision of services: component only specifies its

requirements (e.g. persistence)

2.3.4 Middleware Technologies

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (4/15) 94

➥ Object request broker (ORB)

➥ distributed objects, remote method calls

➥ variety of services, only basic runtime environment

➥ example: CORBA

➥ Application server

➥ focus: support of application logic (middle tier)

➥ services, runtime environment, and component model

➥ today only as part of a middleware platform

➥ Middleware platforms

➥ extension of application servers: support of all tiers

➥ distributed applications as well as EAI

➥ examples: Java EE/EJB, .NET/COM, CORBA 3.0/CCM

2.3.5 Summary

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (4/15) 95

Application-oriented middleware

➥ Runtime environment

➥ resource management, availability, security

➥ Services

➥ name service, session management, transaction

management, persistence service

➥ Component model

➥ defintion of components, interface contracts, runtime

environment

	2 Middleware
	2.1 Communication in Distributed Systems
	2.2 Communication-oriented Middleware
	2.2.1 Tasks of the Middleware
	2.2.2 Programming Models
	2.2.3 Middleware Technologies
	2.2.4 Message Oriented Middleware (MOM)
	2.2.5 Summary

	2.3 Application-oriented Middleware
	2.3.1 Runtime environment
	2.3.2 Services
	2.3.3 Component model
	2.3.4 Middleware Technologies
	2.3.5 Summary

