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Content

➥ Communication in distributed systems

➥ Communication-oriented middleware

➥ Application-oriented middleware

Literature

➥ Hammerschall: Ch. 2, 6

➥ Tanenbaum, van Steen: Ch. 2

➥ Colouris, Dollimore, Kindberg: Ch. 4.4
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Netw.

Distributed application (DA)

Distributed system (DS)
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DS nodeDS node

component component

➥ DA uses DS for communication between its components

➥ DSs generally only offer simple communication services

➥ direct use: network programming

➥ Middleware offers more intelligent interfaces

➥ hides details of network programming
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➥ Middleware is the interface between distributed application and

distributed system

➥ Goal: hide distribution aspects from application

➥ transparency (☞ 1.3)

➥ Middleware can also provide additional services for applications

➥ huge differences in existing middleware

➥ Distinction:

➥ communication-oriented middleware (☞ 2.2)

➥ (only) abstraction from network programming

➥ application-oriented middleware (☞ 2.3)

➥ besides communication, the focus is on support of

distributed applications
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2.1 Communication in Distributed Systems

➥ Basis: interprocess communication (IPC)

➥ exchange of messages between processes (☞ BS I: 3.2)

➥ on the same or on different nodes

➥ e.g. via ports, mailboxes, streams, ...

➥ For distribution: network protocols (☞ RN I)

➥ relevant topics etc: addressing, reliability, guaranteed ordering,

timeouts, acknowledgements, marshalling

➥ Interface for network programming: sockets (☞ RN II)

➥ datagrams (UDP) and streams (TCP)
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Synchronous Communication

➥ ReceiverSender

bl
oc

ke
d

reply

request

ac
tiv

e

Time

Sender and receiver block when

calling a send or receive operation

➥ receiver is waiting for a request

➥ sender is waiting for the reply

➥ Tight coupling between sender and

receivers

➥ advantage: easy to understand model

➥ disadvantage: strong dependency, especially in case of error

➥ Prerequisites:

➥ reliable and fast network connection

➥ receiver process is available
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Asynchronous Communication

➥ Receiver

ac
tiv

e

Sender

ac
tiv

e

request

Time

Sender is not blocked, can continue

immediately after sending the message

➥ Incoming messages are buffered at the

receiver

➥ Answers are optional

➥ receiver can reply asynchronously to

the sender

➥ More complex implementation and use as with synchronous

communication, but usually more efficient

➥ Only loose coupling between the processes

➥ receiver does not have to be ready for reception

➥ less dependent in case of errors
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Client/Server Communication

operation

reply
message

ServerClient

request

message
determine
request

send answer

select object, if needed

execute

(wait)

(continue)

execute method

➥ Mostly synchronous: client blocked until response arrives

➥ Variants: asynchronous (non blocking), one way (without answer)
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Client/Server Communication

getRequest()

sendReply()

d
o
O
p
e
r
a
t
i
o
n
(
)

operation

reply
message

ServerClient

request

message
determine
request

send answer

select object, if needed

execute

(wait)

(continue)

execute method

➥ Mostly synchronous: client blocked until response arrives

➥ Variants: asynchronous (non blocking), one way (without answer)



2.1 Communication in Distributed Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 57

Client/Server Communication: Request/Response Protocol

➥ Typical operations:

➥ doOperation() – send request and wait for result

➥ getRequest() – wait for request

➥ sendReply() – send result

➥ Typical message structure:

messageType
requestID
objectReference
methodID
arguments

request / reply ?
unique ID of request (usually int)
reference to remote object (if needed)
method to be called (int / String)
arguments (usually as Byte array)

➥ request ID + sender ID result in unique message ID

➥ e.g. to map an answer to its query
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Client/Server Communication: Error Handling

➥ Request and/or response messages may be lost

➥ Client sets a timeout when sending a request

➥ after expiration, request is usually sent again

➥ after a few repetitions: termination with exception

➥ Server discards duplicate requests if request has already been /

is still being processed

➥ For lost response messages:

➥ idempotent operations can be executed again

➥ otherwise: save results of operations in a history

➥ for repeated request: only resend the result

➥ delete history entries when next request arrives; if

necessary confirmations for results can also be used
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➥ Focus: provision of a communication infrastructure for distributed

applications

➥ Tasks:

➥ communication

➥ dealing with heterogeneity

➥ error handling

Application

Communication oriented

Operating system / distributed system

middleware
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Communication

➥ Provision of a middleware protocol

➥ Localization and identification of communication partners

➥ Integration with process and thread management

Transport protocol (e.g. TCP)

Middleware protocol

Application protocol

Lower layers of the protocol stack
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Heterogeneity

➥ Problem with data transmission:

➥ heterogeneity in distributed systems

➥ Heterogeneous hardware and operating systems

➥ different byte order

➥ little endian vs. big endian

➥ different character encoding

➥ e.g.. ASCII / Unicode / UTF-8 / UTF-16

➥ Heterogeneous programming languages

➥ different representation of simple and complex data types in

the main memory



2.2.1 Tasks of the Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 62

Heterogeneity: Solutions (☞ RN I)

➥ Use of generic, standardized data formats

➥ known to all communication partners and middleware

➥ platform-specific formats for middleware (e.g. CDR for

CORBA) or external formats, e.g. XML

➥ Heterogeneity of hardware and operating system

➥ is handled transparently for the applications by the middleware

➥ Heterogeneity of programming languages

➥ applications need to convert data to higher-level format and

back (marshaling / unmarshaling)

➥ necessary code is usually generated automatically

➥ client stub / server skeleton
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Error Handling

➥ Possible errors due to distribution

➥ incorrect transmission (incl. loss of messages)

➥ handled by the protocols of the distributed system:

➥ checksums, CRC
➥ retransmission of packets (e.g. TCP)

➥ failure of components (network, hardware, software)

➥ handled by middleware or application:

➥ acceptance of the error
➥ retransmission of messages

➥ replication of components (error avoidance)

➥ controlled termination of the application
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2.2.2 Programming Models

➥ Programming model defines two concepts:

➥ communication model

➥ synchronous vs. asynchronous

➥ programming paradigm

➥ object-oriented vs. procedural

➥ Three common programming models for middleware:

➥ message-oriented model (asynchronous / arbitrary)

➥ remote procedure call (synchronous / procedural)

➥ remote method invocation (synchronous / object-oriented)
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Message-Oriented Model

➥ Sender puts message in receiver’s queue

Sender

Message

Message queue

Message

Receiver

➥ Receiver accepts message as soon as he is ready

➥ Extensive decoupling of transmitter and receiver

➥ No method or procedure calls

➥ data is packed and sent by the application

➥ no automatic reply message
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Remote Procedure Call (RPC)

➥ Allows a client to call a procedure in a remote server process

...
P(a) {

return b;
}

y = P(x);
Input parameters

process
Client

process
Server

Results

➥ Communication according to request / response principle

Remote Method Invocation (RMI)

➥ Allows an object to call methods of a remote object

➥ In principle very similar to RPC
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Common Basic Concepts of Remote Calls

➥ Client and server are decoupled by interface definition

➥ defines names of calls, parameters and return values

➥ Introduction of client stubs and server skeletons as an access

interface

➥ are automatically generated from interface definition

➥ IDL compiler (IDL = interface definition language)

➥ are responsible for marshaling / unmarshaling

as well as for the actual communication

➥ realize access and location transparency
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How Client Stub and Server Skeleton Work (RPC)

Client stub Server skeleton

P(a) {y=P(x)

...
P(a) {

return b;
}

; ;

Client process

return b;
}

receive(m1);

client=sender(m1);

unpack argument x
from message

y = P(x)

}

pack argument a
into message

send(Server, m1);

receive(Server, m2)

unpack result b
from message

while (true) {

send(Client, m2);

pack result y

Server process

into message
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Basis of RMI: The Proxy Pattern

➥ Client works with a deputy object (proxy) of the actual server

object

➥ proxy and server object implement the same interface

➥ client only knows / uses this interface

Client Proxy Object

Interface
<<interface>>
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Flow of a Remote Method Call

Proxy

Skeleton calls
the same
method on
the object

Client−OS

Client

Network

Server−BS

Server

Skeleton

Server nodeClient node

Object

Status

Method

Same interface
as real object

Interface

Client calls
a method

Packed request is sent over the network
(object ID, method name, parameters)
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Creation of a Client/Server Program

Server

Client

Compiler

Compiler

Client stubs

IDL 
compiler

Server skel.

Runtime
RPC/RMI

Server
procedures

Client

library

Interface
description

program

➥ Applies in principle to all realizations of remote calls



2.2 Communication-oriented Middleware ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 72

2.2.3 Middleware Technologies

➥ Realize (at least) one of the programming models

➥ rely on open standards / standardized interfaces

➥ Remote procedure call

➥ SUN RPC, DCE RPC, Web Services, ...

➥ Remote method invocation

➥ Java RMI (☞ 3), CORBA, ...

➥ Message-oriented middleware technologies

➥ MOM: message oriented middleware, messaging systems

➥ mainly for EAI

➥ Java Message Service, WebSphereMQ (MQSeries), ...
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2.2.4 Message Oriented Middleware (MOM)

➥ Middleware technology for the message-oriented model

➥ In addition to message exchange also other services, especially

queue management

interface
Access

interface
Access

Sender ReceiverMessage queues

Message queue
manager

Protocol stack

Middleware protocol (proprietary)
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Message Queue Infrastructure

➥ Access to queues is only possible locally

➥ local: same computer or same subnet

➥ Transport of messages across subnet boundaries by queue

administrators (routers)

Manager Manager

Manager

Sender Receiver

ReceiverSender
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Variants of message exchange

➥ Point-to-point communication

➥ communication between two defined processes

➥ simplest model: asynchronous communication

➥ enhancement: request/reply model

➥ enables synchronous communication via asynchronous
middleware

➥ Broadcast communication

➥ Message is sent to all reachable receivers

➥ one implementation: publish/subscribe model

➥ publishers publish messages/news on a topic

➥ subscribers subscriber to certain topics

➥ mediation via a broker
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Example: Java Message Service

➥ Part of the Java Enterprise Edition (Java EE)

➥ Unified Java interface for MOM services

➥ Distinguishes two roles:

➥ JMS provider: the respective MOM server

➥ JMS client: sender or receiver of messages

➥ JMS supports:

➥ asynchronous point-to-point communication

➥ request/reply model

➥ publish/subscribe model

➥ JMS defines corresponding access objects and methods
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2.2.5 Summary

➥ Tasks: Communication, dealing with heterogeneity, error handling

➥ Programming models:

➥ message-oriented model (asynchronous)

➥ basis: message queues

➥ refinements:
➥ request/reply model (synchronous)

➥ publish/subscribe model (broadcast)

➥ remote procedure or method calls

➥ synchronous: request and response

➥ generated stubs for (un-)marshaling
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➥ Based on communication-oriented middleware

➥ Extends it by:

➥ runtime environment

➥ services

➥ component model

Runtime environment ServicesServices

Component model

Communication infrastructure

Operating system / distributed system

component
Application

component component
Application Application
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➥ Based on node operating systems of the distributed system

➥ Operating system (OS) manages processes, memory, I/O, ...

➥ provides basic functionality

➥ starting / stopping processes, scheduling, ...

➥ interprocess communication, synchronization, ...

➥ Runtime environment extends functionality of the OS:

➥ improved resource management

➥ e.g. concurrency, connection management

➥ improved availability

➥ improved security mechanisms
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Resource management

➥ Middleware goes beyond simple OS functionality

➥ e.g. independently managed main memory areas with

individual security criteria

➥ pooling of processes, threads, connections

➥ are created for stock and made available as required

➥ possible, since middleware is specific to certain classes of

applications

➥ Goal: improved performance, scalability and availability
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Concurrency

➥ Concurrency in this context:

➥ isolated parallel processing of requests

➥ Concurrency can be implemented via processes or threads

➥ threads (lightweight processes): concurrent activities within

processes

➥ threads in the same process share all resources

➥ advantages and disadvantages:

➥ processes: high resource requirements, not well scalable,

good protection, with low concurrency

➥ threads: well scalable, no mutual protection, with high

concurrency
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Concurrency ...

➥ Middleware takes over automatic generation / administration of
threads in the case of concurrent orders, e.g.

➥ single-threaded

➥ only one thread, sequential processing

➥ thread-per-request

➥ a new thread is created for each request

➥ thread-per-session

➥ a new thread is created for each session (client)

➥ thread pool

➥ fixed number of threads, incoming requests are distributed
automatically

➥ saves thread generation costs
➥ limits resource consumption
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Connection management

➥ Connection here means: endpoints of communication channels

➥ occur at tier boundaries (between process spaces)

➥ e.g. client/server interface, database access

➥ are assigned to a process/thread, if in the active state

➥ require resources (memory, processor time)

➥ opening and closing connections is costly

➥ To save resources: pooling of connections

➥ connections are initialized to stock and placed in pool

➥ each thread/process receives a connection on demand

➥ after use: return connection to pool
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Availability

➥ Requirement to the application,

but mainly implemented by the runtime environment

➥ Downtimes are caused by

➥ failure of a hardware or software component

➥ overload of a hardware or software component

➥ maintenance of a hardware or software component

➥ Frequent technology for ensuring availability: cluster

➥ replication of hardware and software

➥ cluster appears externally as one unit

➥ two types: fail-over cluster / load-balancing cluster
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Security

➥ Distributed applications are vulnerable due to their distribution

➥ Middleware supports different security models

➥ Security requirements:

➥ authentication:

➥ proves the identity of the user / a component

➥ e.g. by password query (for users) or cryptographic

techniques and certificates (for components)

➥ authorization:

➥ definition of access rights for users to specific services

➥ or more fine grained: methods and attributes

➥ requires secure authentication
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Security ...

➥ Security requirements ...:

➥ confidentiality

➥ information cannot be intercepted during transmission in

the network
➥ technique: encryption

➥ integrity

➥ transmitted data cannot be changed without being noticed

➥ techniques: cryptographic checksum (message digest,

fingerprint), digital signature

➥ digital signature also ensures authenticity of the sender
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Security ...

➥ Security mechanisms:

➥ encryption

➥ symmetric (e.g. AES, IDEA)
➥ same key for encryption and decryption

➥ asymmetric (public key algorithms, e.g. RSA)
➥ public key for encryption
➥ private key for decrypting

➥ digital signature

➥ ensures integrity of a message and authenticity of the
sender as well as nonrepudiation

➥ certificate
➥ certifies that public key and person (or component) belong

together
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Name service (directory service) (☞ 4)

➥ Publication of available services

➥ in the intranet or Internet

➥ Assignment of names to references (addresses)

➥ name serves as a unique / unchangeable identifier

➥ the client can request the address of a service via its name

➥ address can change e.g. at restart

➥ goal: decoupling of client and server

➥ Examples: JNDI, RMI registry, CORBA interoperable naming

service, UDDI registry, LDAP server, Active Directory, ...
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Session management

➥ In interactive systems: each instance of a client is assigned its
own session

➥ deleted when logging out or closing the client

➥ Session stores all relevant data (in main memory)

➥ e.g. identification of the user, browser type, ”‘shopping cart”’, ...

➥ data stored in the server or in the client

➥ transient data: deleted at the end of the session

➥ persistent data: is written to a data carrier (database) at the
end of the session.

➥ Middleware implements/supports the assignment of requests to
sessions (often transparent)

➥ e.g. cookies, HTTP-sessions, session beans, ...
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Transaction management (☞ 7.4)

➥ Service for interactive, data-centric applications

➥ consistency / integrity of data is important

➥ this means that the entire (maybe distributed) dataset must

represent a valid state in itself

➥ Typical sequence in applications:

1. client requests data

2. client changes the data

3. client requests that the data be rewritten

➥ problem: steps 1-3 could be performed by two clients at the

same time

➥ Transaction management allows execution of a sequence of
actions as an atomic unit
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Persistence service

➥ Persistence: all measures for the permanent storage of main

memory data

➥ Persistence service: intelligent interface to the database

➥ integrated in middleware or as an independent component

➥ most important service for data-centered applications besides
transaction management

➥ Most common type: object-relational mapper (OR-Mapper)

➥ maps objects in memory to tables in a relational database

➥ class → table
➥ attribute → column
➥ object → row

➥ mapping rules are controlled by application developer
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Persistence service ...
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➥ Components: “large” objects for structuring applications

➥ A component model defines:

➥ the term “component”

➥ structure and properties of the components

➥ mandatory and optional interfaces

➥ interface contracts

➥ how do components interact with each other and with the

runtime environment?

➥ component runtime environment

➥ management of the life cycle of components

➥ implicit provision of services: component only specifies its

requirements (e.g. persistence)
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➥ Object request broker (ORB)

➥ distributed objects, remote method calls

➥ variety of services, only basic runtime environment

➥ example: CORBA

➥ Application server

➥ focus: support of application logic (middle tier)

➥ services, runtime environment, and component model

➥ today only as part of a middleware platform

➥ Middleware platforms

➥ extension of application servers: support of all tiers

➥ distributed applications as well as EAI

➥ examples: Java EE/EJB, .NET/COM, CORBA 3.0/CCM
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Application-oriented middleware

➥ Runtime environment

➥ resource management, availability, security

➥ Services

➥ name service, session management, transaction

management, persistence service

➥ Component model

➥ defintion of components, interface contracts, runtime

environment
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