Distributed Systems

Winter Term 2024/25

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: October 24, 2024

=*===* Roland Wismller .
=1%7= Betriebssysteme / verteilte Systeme Distributed Systems (1/15)

Distributed Systems

Winter Term 2024/25

2 Middleware

=T===" Roland Wismdiller istri
=== Betriebssysteme / verteilte Systeme Distributed Systems (2/15)

49

2 Middleware ...

Content
= Communication in distributed systems
= Communication-oriented middleware

= Application-oriented middleware

Literature

w Hammerschall: Ch. 2, 6
= Tanenbaum, van Steen: Ch. 2
= Colouris, Dollimore, Kindberg: Ch. 4.4

=*===* Roland Wismller .
=1%7= Betriebssysteme / verteilte Systeme Distributed Systems (2/15)

50

2 Middleware ...

Distributed application (DA)

DA DA
component component

DS node Netw. DS node

Distributed system (DS)

= DA uses DS for communication between its components

= DSs generally only offer simple communication services
= direct use: network programming

= Middleware offers more intelligent interfaces
= hides details of network programming

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15)

51

2 Middleware ... "

Distributed application (DA) Distributed application (DA)
DA DA DA DA
component component component component
Middleware Middleware
DS node [Nl DS node DS node e™-I53 node
Distributed system (DS) Distributed system (DS)

= DA uses DS for communication between its components

= DSs generally only offer simple communication services
= direct use: network programming

= Middleware offers more intelligent interfaces
= hides details of network programming

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 51

2 Middleware ... "

= Middleware is the interface between distributed application and
distributed system

= (Goal: hide distribution aspects from application
= transparency (= 1.3)

= Middleware can also provide additional services for applications
= huge differences in existing middleware

= Distinction:
= communication-oriented middleware (= 2.2)
= (only) abstraction from network programming
= application-oriented middleware (= 2.3)

= pbesides communication, the focus is on support of
distributed applications

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 52

2 Middleware ... "

2.1

-

Communication in Distributed Systems

Basis: interprocess communication (IPC)
= exchange of messages between processes (= BS_I: 3.2)
= on the same or on different nodes

= ¢©.g. via ports, mailboxes, streams, ...

For distribution: network protocols (= RN._I)

= relevant topics etc: addressing, reliability, guaranteed ordering,
timeouts, acknowledgements, marshalling

Interface for network programming: sockets (== RN_II)

= datagrams (UDP) and streams (TCP)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 53

2.1 Communication in Distributed Systems ... "

Synchronous Communication

w Sender and receiver block when Sender Receiver

calling a send or receive operation |
l request 1

= receiver is waiting for a request

- |)

= sender is waiting for the reply 2 =

o ©

= Tight coupling between sender and 2 reply .
receivers : \'%me

= advantage: easy to understand model |
= disadvantage: strong dependency, especially in case of error

= Prerequisites:
= reliable and fast network connection
= receiver process is available

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 54

2.1 Communication in Distributed Systems ... "

Asynchronous Communication

-

-

Sender is not blocked, can continue Sender Receiver
Immediately after sending the message request
Incoming messages are buffered at the . .
receiver > =
| 3 3

Answers are optional © ©
= receiver can reply asynchronously to Time

the sender \9

More complex implementation and use as with synchronous
communication, but usually more efficient

Only loose coupling between the processes

= receiver does not have to be ready for reception
= |ess dependent in case of errors

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 59

2.1 Communication in Distributed Systems ... "

Client/Server Communication

Client Server

oep;(eer(;lijzitgn request determine
. message - request
select object, if needed
execute method
reply send answer
(continue) message

= Mostly synchronous: client blocked until response arrives

= \ariants: asynchronous (non blocking), one way (without answer)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 56

2.1 Communication in Distributed Systems ... "

Client/Server Communication

Client Server

—_ get Request ()
N i R H
=g execute ™\ request /: determine
S 'operation 4N |
— | message T request
o I : I T T T T ==
O | o select object, if needed
o, (wait)
S , | execute method
O I 1 r———-——-—-=-=-=-=-= g
ToL__L__. reply — send answer

(continue) message \\\E ---------

sendRepl y()
_/

= Mostly synchronous: client blocked until response arrives

= \ariants: asynchronous (non blocking), one way (without answer)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 56

2.1 Communication in Distributed Systems ... ‘I

Client/Server Communication: Request/Response Protocol

= Typical operations:

= doOperation() — send request and wait for result
= getRequest () — walit for request
= sendReply () —send result

= Typical message structure:

messageType request / reply ?

requestiD unique ID of request (usually int)
objectReference | reference to remote object (if needed)
methodID method to be called (int / String)
arguments arguments (usually as Byte array)

= request ID + sender ID result in unique message |1D
= ¢.g. to map an answer to its query

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (2/15) 57

Distributed Systems

Winter Term 2024/25

24.10.2024

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: October 24, 2024

=*===* Roland Wismller .
=1%7= Betriebssysteme / verteilte Systeme Distributed Systems (3/15)

2.1 Communication in Distributed Systems ... "

Client/Server Communication: Error Handling

= Request and/or response messages may be lost
= (Client sets a timeout when sending a request

= after expiration, request is usually sent again
= after a few repetitions: termination with exception

= Server discards duplicate requests if request has already been /
is still being processed

= For lost response messages:
= dempotent operations can be executed again
= otherwise: save results of operations in a history

= for repeated request: only resend the result

= delete history entries when next request arrives; if
necessary confirmations for results can also be used

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 58

2.2 Communication-oriented Middleware [I

= Focus: provision of a communication infrastructure for distributed
applications
= Tasks:
= communication
= dealing with heterogeneity
= error handling

Application

Communication oriented
middleware

Operating system / distributed system

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 59

2.2.1 Tasks of the Middleware

Communication

-

-

Provision of a middleware protocol

_ocalization and identification of communication partners

ntegration with process and thread management

Application protocol

Middleware protocol

Transport protocol (e.g. TCP)

Lower layers of the protocol stack

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15)

60

2.2.1 Tasks of the Middleware ... "

Heterogeneity

= Problem with data transmission:
= heterogeneity in distributed systems

= Heterogeneous hardware and operating systems
= different byte order
= |ittle endian vs. big endian
= different character encoding
= e.g.. ASCIl / Unicode / UTF-8 / UTF-16

= Heterogeneous programming languages

= different representation of simple and complex data types in
the main memory

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15)

61

2.2.1 Tasks of the Middleware ... "

Heterogeneity: Solutions (= RN._I)

= Use of generic, standardized data formats

= known to all communication partners and middleware

= platform-specific formats for middleware (e.g. CDR for
CORBA) or external formats, e.g. XML

= Heterogeneity of hardware and operating system
= s handled transparently for the applications by the middleware
= Heterogeneity of programming languages

= gpplications need to convert data to higher-level format and
back (marshaling / unmarshaling)

= necessary code is usually generated automatically
- client stub / server skeleton

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 62

2.2.1 Tasks of the Middleware ... "

Error Handling

= Possible errors due to distribution
= incorrect transmission (incl. loss of messages)

= handled by the protocols of the distributed system:
- checksums, CRC

- retransmission of packets (e.g. TCP)

= failure of components (network, hardware, software)
= handled by middleware or application:
- acceptance of the error
- retransmission of messages
- replication of components (error avoidance)
- controlled termination of the application

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 63

2.2 Communication-oriented Middleware ... "

2.2.2 Programming Models

= Programming model defines two concepits:

= communication model
= synchronous vs. asynchronous

= programming paradigm
= object-oriented vs. procedura

= Three common programming models for middleware:
= message-oriented model (asynchronous / arbitrary)
= remote procedure call (synchronous / procedural)
= remote method invocation (synchronous / object-oriented)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 64

2.2.2 Programming Models ...

Message-Oriented Model

= Sender puts message in receiver's queue

Message

Message

Sender | | |

= || =

Message queue

= Receiver accepts message as soon as he is ready

= Extensive decoupling of transmitter and receiver

= No method or procedure calls

= data is packed and sent by the application

= no automatic reply message

Recelver

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Distributed Systems (3/15)

65

2.2.2 Programming Models ...

d

Remote Procedure Call (RPC)

= Allows a client to call a procedure in a remote server process

Client
process

r

_

|
y = P(x);

~

Input parameters

Results

\/

r A
- P@){

return b;

)

J

}

. J

Server
process

= Communication according to request/response principle

Remote Method Invocation (RMI)

= Allows an object to call methods of a remote object

= |n principle very similar to RPC

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Distributed Systems (3/15)

66

2.2.2 Programming Models ... "

Common Basic Concepts of Remote Calls

= Client and server are decoupled by interface definition
= defines names of calls, parameters and return values

w |[ntroduction of client stubs and server skeletons as an access
interface

= are automatically generated from interface definition
= |[DL compiler (IDL = interface definition language)

= are responsible for marshaling / unmarshaling
as well as for the actual communication

= realize access and location transparency

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 67

2.2.2 Programming Models ...

How Client Stub and Server Skeleton Work (RPC)

Client process

Server process

Z5F.2F Betriebssysteme / verteilte Systeme

~
(Client stub f Server skeleton
y=P(x)—= P(a) { while (true) {
A pack argument a < receive(m)
into message / client=sender(m1);
send(Server, m1); % unpack argument x
from message P(a) {
receive(Server, m2) - y=P(x); —
unpack result b \ pack result y return b;
from message N into message
return b; send(Client, m2);
- Y, . Y,
Eiz=IC Roland Wismdller Distributed Systems (3/15) 68

2.2.2 Programming Models ... "

Basis of RMI: The Proxy Pattern

= (Client works with a deputy object (proxy) of the actual server
object

= proxy and server object implement the same interface
= client only knows / uses this interface

<<interface>>
Interface

B S

Client Proxy Object
—>

>

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 69

2.2.2 Programming Models ...

d

Flow of a Remote Method Call

Client node Server node
Client Server e Object
- ;
Client calls Same interface Status
a method — / as real object Method
‘lﬁ/ Skeletoncalls = | A T nterface
Proxy the same ——" | g aleton
method on =
the object
Client-0S Selnver—-BS
Network Packed request is sent over the network
(object ID, method name, parameters)
B = Eg’lﬁggsvsvyi/g[reﬂrjrlllg I verteilte Systeme Distributed Systems (3/15) /70

2.2.2 Programming Models ...

d

Creation of a Client/Server Program

Server
procedures)

A

/

/
Z

Interface
description

erver skel.

J-

N\
\
N\
\

4

IDL

compiler

Client
program

A
N

lient stubs

> Compiler { Server]

RPC/RMI]

Runtime
library

> Compller »[Client]

= Applies in principle to all realizations of remote calls

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Distributed Systems (3/15) /1

2.2 Communication-oriented Middleware ... "

2.2.3 Middleware Technologies

= Realize (at least) one of the programming models
= rely on open standards / standardized interfaces

= Remote procedure call
= SUN RPC, DCE RPC, Web Services, ...

= Remote method invocation
= Java RMI (= 3), CORBA, ...

= Message-oriented middleware technologies
= MOM: message oriented middleware, messaging systems
= mainly for EAI
= Java Message Service, WebSphereMQ (MQSeries), ...

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 72

2.2 Communication-oriented Middleware ...

d

2.2.4 Message Oriented Middleware (MOM)

= Middleware technology for the message-oriented model

= |n addition to message exchange also other services, especially
gqueue management

Sender

Message queues

Access
Interface

Receiver

Message queue
manager

Access
Interface

Middleware protocol (proprietary)

Protocol stack

=*"%=z2"" Roland Wismiller

Z5F.2F Betriebssysteme / verteilte Systeme

Distributed Systems (3/15)

/3

2.2.4 Message Oriented Middleware (MOM) ...

d

Message Queue Infrastructure

= Access to queues is only possible locally
= |ocal: same computer or same subnet

= Transport of messages across subnet boundaries by queue
administrators (routers)

)

Sender

Sender

-

i N

Manager

/—\

Recelver

Manager

i

Recelver

Manager

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Distributed Systems (3/15)

74

2.2.4 Message Oriented Middleware (MOM) ... "

Variants of message exchange

= Point-to-point communication
= communication between two defined processes
= simplest model: asynchronous communication
= enhancement: request/reply model
= enables synchronous communication via asynchronous
middleware
= Broadcast communication
= Message is sent to all reachable receivers
= one implementation: publish/subscribe model

= publishers publish messages/news on a topic
= subscribers subscriber to certain topics
= mediation via a broker

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 73

2.2.4 Message Oriented Middleware (MOM) ...

Example: Java Message Service
= Part of the Java Enterprise Edition (Java EE)
= Unified Java interface for MOM services

= Distinguishes two roles:
= JMS provider: the respective MOM server
= JMS client: sender or receiver of messages

= JMS supports:
= asynchronous point-to-point communication
= request/reply model
= publish/subscribe model

= JMS defines corresponding access objects and methods

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15)

2.2 Communication-oriented Middleware ... "

2.2.5 Summary

= Tasks: Communication, dealing with heterogeneity, error handling
= Programming models:

= message-oriented model (asynchronous)

= Dbasis: message queues
= refinements:

- request/reply model (synchronous)
- publish/subscribe model (broadcast)

= remote procedure or method calls

= synchronous: request and response
= generated stubs for (un-)marshaling

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 77

2.3 Application-oriented Middleware

w Based on communication-oriented middleware

= Extends it by:
= runtime environment
= services
= component model

Application Application Application
component component component

SEervices Runtime environment SE€rvices

@ Component model @

Communication infrastructure

Operating system / distributed system

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15)

/8

2.3.1 Runtime environment "

= Based on node operating systems of the distributed system
= (QOperating system (OS) manages processes, memory, I/O, ...
= provides basic functionality

= starting / stopping processes, scheduling, ...
= interprocess communication, synchronization, ...

= Runtime environment extends functionality of the OS:
= mproved resource management
= e.g. concurrency, connection management
= mproved availability
= mproved security mechanisms

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 79

2.3.1 Runtime environment ... "

Resource management

= Middleware goes beyond simple OS functionality

= e.g. iIndependently managed main memory areas with
iIndividual security criteria

= pooling of processes, threads, connections
= are created for stock and made available as required
= possible, since middleware is specific to certain classes of
applications

= (Goal: improved performance, scalability and availability

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 80

2.3.1 Runtime environment ... "

Concurrency

= (Concurrency in this context:
= solated parallel processing of requests

= (Concurrency can be implemented via processes or threads

= threads (lightweight processes): concurrent activities within
processes

= threads in the same process share all resources
= advantages and disadvantages:

= processes: high resource requirements, not well scalable,
good protection, with low concurrency

= threads: well scalable, no mutual protection, with high
concurrency

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 81

2.3.1 Runtime environment ... "

Concurrency ...

= Middleware takes over automatic generation / administration of
threads in the case of concurrent orders, e.g.

= single-threaded
= only one thread, sequential processing
= thread-per-request

= a new thread is created for each request
= thread-per-session

= a new thread is created for each session (client)
= thread pool

= fixed number of threads, incoming requests are distributed
automatically

- saves thread generation costs
- limits resource consumption

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 82

2.3.1 Runtime environment ... "

Connection management

= (Connection here means: endpoints of communication channels
= occur at tier boundaries (between process spaces)
= e.g. client/server interface, database access
= are assigned to a process/thread, if in the active state
= require resources (memory, processor time)
= opening and closing connections is costly

= To save resources: pooling of connections
= connections are initialized to stock and placed in pool
= ecach thread/process receives a connection on demand
= after use: return connection to pool

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 83

2.3.1 Runtime environment ... "

Availability

= Requirement to the application,

but mainly implemented by the runtime environment
= Downtimes are caused by

= failure of a hardware or software component

= overload of a hardware or software component

= maintenance of a hardware or software component

= Frequent technology for ensuring availability: cluster
= replication of hardware and software
= cluster appears externally as one unit
= two types: fail-over cluster / load-balancing cluster

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 84

2.3.1 Runtime environment ... "

Security
= Distributed applications are vulnerable due to their distribution
= Middleware supports different security models

= Security requirements:

= authentication:
= proves the identity of the user / a component
= e.g. by password query (for users) or cryptographic
techniques and certificates (for components)
= authorization:
= definition of access rights for users to specific services
- or more fine grained: methods and attributes
= requires secure authentication

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 85

2.3.1 Runtime environment ... "

Security ...

= Security requirements ...:
= confidentiality

= information cannot be intercepted during transmission in
the network

= technique: encryption

= ntegrity

= transmitted data cannot be changed without being noticed

= techniques: cryptographic checksum (message digest,
fingerprint), digital signature

- digital signature also ensures authenticity of the sender

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 86

2.3.1 Runtime environment ... "

Security ...

= Security mechanisms:
= encryption
= symmetric (e.g. AES, IDEA)
- same key for encryption and decryption
= asymmetric (public key algorithms, e.g. RSA)
- public key for encryption
- private key for decrypting
= digital signature

= ensures integrity of a message and authenticity of the
sender as well as nonrepudiation

w certificate

= certifies that public key and person (or component) belong
together

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 87

2.3.2 Services ['

Name service (directory service) (= 4)

w Publication of available services
w N the intranet or Internet

= Assignment of names to references (addresses)
= name serves as a unique / unchangeable identifier
= the client can request the address of a service via its name
= address can change e.g. at restart
= goal: decoupling of client and server

= Examples: JNDI, RMI registry, CORBA interoperable naming
service, UDDI reqistry, LDAP server, Active Directory, ...

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 88

2.3.2 Services ... "

Session management

= |n interactive systems: each instance of a client is assigned its
own session
= deleted when logging out or closing the client

= Session stores all relevant data (in main memory)
= e.g. identification of the user, browser type, ™
= data stored in the server or in the client
= transient data: deleted at the end of the session

= persistent data: is written to a data carrier (database) at the
end of the session.

shopping cart™, ...

= Middleware implements/supports the assignment of requests to
sessions (often transparent)

= ¢©.g. cookies, HT TP-sessions, session beans, ...

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 89

2.3.2 Services ... "

Transaction management (= 7.4)

= Service for interactive, data-centric applications
= consistency / integrity of data is important
= this means that the entire (maybe distributed) dataset must
represent a valid state in itself
= Typical sequence in applications:
1. client requests data
2. client changes the data
3. client requests that the data be rewritten

= problem: steps 1-3 could be performed by two clients at the
same time

= Transaction management allows execution of a sequence of
actions as an atomic unit

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (3/15) 90

Distributed Systems

Winter Term 2024/25

31.10.2024

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: October 24, 2024

=*===* Roland Wismller .
=1%7= Betriebssysteme / verteilte Systeme Distributed Systems (4/15)

2.3.2 Services ... "

Persistence service

= Persistence: all measures for the permanent storage of main
memory data
= Persistence service: intelligent interface to the database
= integrated in middleware or as an independent component
= most important service for data-centered applications besides
transaction management
= Most common type: object-relational mapper (OR-Mapper)
= maps objects in memory to tables in a relational database

= class — table
w attribute — column
= object — row

= mapping rules are controlled by application developer

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (4/15) 91

2.3.2 Services ...

Persistence service ...

1 1
N * B <
T > 1l
9 g A Vard
E o Varb C
= E Varl
QO c Var2 Var6
0 g Var3 Var7
T T T OR mapper
5
S o
- 0 Table A Table BC
f_g o [|Varl |Var2 [Var3 | Ref Vard | Var5 | Varé | Var7/
og
T 3
Q) N’
Y

=*"%=z2"" Roland Wismiller

Z5F.2F Betriebssysteme / verteilte Systeme

Distributed Systems (4/15)

2.3.3 Component model "

= Components: “large” objects for structuring applications

= A component model defines:
= the term “component”

= structure and properties of the components
= mandatory and optional interfaces
= nterface contracts

= how do components interact with each other and with the
runtime environment?

= component runtime environment

= management of the life cycle of components

= implicit provision of services: component only specifies its
requirements (e.g. persistence)

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (4/15) 93

2.3.4 Middleware Technologies ['

= Object request broker (ORB)
= distributed objects, remote method calls

= variety of services, only basic runtime environment
= example: CORBA

= Application server
= focus: support of application logic (middle tier)
= services, runtime environment, and component model
= today only as part of a middleware platform

= Middleware platforms
= extension of application servers: support of all tiers
= distributed applications as well as EAI
= examples: Java EE/EJB, .NET/COM, CORBA 3.0/CCM

ET5=7" Roland Wismdiller -
=1#_C= Betriebssysteme / verteilte Systeme Distributed Systems (4/15) 94

2.3.5 Summary

Application-oriented middleware

= Runtime environment
= resource management, availability, security

w Services

= name service, session management, transaction
management, persistence service

= Component model

= defintion of components, interface contracts, runtime
environment

=== Roland Wismdiller -
—+= Betriebssysteme / verteilte Systeme Distributed Systems (4/15)

95

	2 Middleware
	2.1 Communication in Distributed Systems
	2.2 Communication-oriented Middleware
	2.2.1 Tasks of the Middleware
	2.2.2 Programming Models
	2.2.3 Middleware Technologies
	2.2.4 Message Oriented Middleware (MOM)
	2.2.5 Summary

	2.3 Application-oriented Middleware
	2.3.1 Runtime environment
	2.3.2 Services
	2.3.3 Component model
	2.3.4 Middleware Technologies
	2.3.5 Summary

