
Prof. Dr. rer. nat. Roland Wismüller

Excercise Sheet 2
(To be processed until 02.11.)

Lecture Distributed Systems

Winter Term 2023/24

Exercise 1: Communication forms in distrubited systems (29e)

There are basically two types of communication in distributed systems: reliable message streams and unreliable datagrams.

What are the main characteristics of both forms of communication and what are their advantages and disadvantages? Name

possible areas of application.

Exercise 2: Conversion of data formats (30e)

When communicating in distributed systems, it is generally necessary to convert data structures stored internally in the

processes into a format suitable for transmission. For what reasons is this indispensable? Discuss necessary measures for

different data types.

Exercise 3: Semantics of client/server communication (Mandatory exercise for new FPOs) (32e)

a) Client/server communication can cause problems if messages are lost during transmission between client and server.

The handling of such errors can be different, resulting in different semantics for communication:

• at least once - the operation is executed at least once,

• at most once - the operation is executed at most once, and

• exactly once - the operation is executed exactly once.

The following figure shows state diagrams for client and server with an implementation of at least once semantics:

End

Start

Wait

End

Start

Client

Proc

Server

Timeout

Request

Send request
Process request
Send reply

for server

Received
reply

Received request

Input events (e.g. incoming messages, timeout) are shown in black, the action or output of the state machine in the

respective state in blue.

Sketch analog state diagrams for implementations of the at most once and exactly once semantics using incoming

messages and timeout events as above. Use sequence numbers to identify individual requests for the exactly once

semantics.

b) For the following applications, consider whether at least once or at most once semantics is more appropriate:

• pressing an elevator button,

1



• translating a program,

• write/append data to a file,

• ordering a pizza,

• to get a bank account statement,

• to make an electronic transfer,

• cast one vote in an electronic voting service.

Exercise 4: Request/reply protocol (31e)

For a typical client-server protocol in request/reply style, it makes sense to use a protocol based on datagrams. Why?

Design such a protocol.

Pay particular attention to all conceivable error scenarios and how they should be handled. The protocol should be as

lightweight as possible. For example, the datagram layer may offer the following operations as a service:

• send(in address, in data) - asynchronous, unreliable transmission of data,

• recv(out address, out data, in timeout) - blocking receive of a packet with timeout.

The following operations are to be implemented:

• doOperation(in address, in request, out reply) - synchronous sending of a request to the server,

• getRequest(out address, out request) - blocking reception of a request (server),

• sendReply(in address, in reply) - sending the reply (server)

You may assume that fragmentation of the messages to be transmitted is not necessary. Furthermore, it is guaranteed that

no data packets are corrupted. However, any packet loss or non-compliance with the packet sequence must be taken into

account.

Exercise 5: Middleware (63e)

A reliable multicast service allows a sender to deliver reliable messages to multiple recipients. Is such a service part of a

middleware layer or should it be part of an underlying layer?

Exercise 6: Transparency of RPC (Mandatory exercise for new FPOs) (15e)

If Remote Procedure Call (RPC) is used, it does not matter whether the called procedure (i.e. the server process) is

located on the local computer node or on another node. But what happens when the procedure executes a system call?

What problems could this cause, and how could they be addressed?

2


