
Prof. Dr. rer. nat. Roland Wismüller

Excercise Sheet 9

Solution

Lecture Distributed Systems

Winter Term 2024/25

Exercise 1: Algorithm of Ricart and Agrawala (45e)

Suppose a process denies permission and then crashes. The requesting process believes it is still alive, but the permission

never arrives. A way out is to cause the requester not only to block, but to sleep for a certain amount of time, after which

he queries all processes that have denied permission to check if they are still running.

Exercise 2: Deadlocks - Ricart and Agrawala (84e)

That depends on the fundamental rules. If the processes enter into critical sections strictly sequentially, i.e. a process in a

critical section must not attempt to enter into another critical section, there is no way it can block while holding a resource

(i.e. a critical section) that another process needs. The system is deadlock-free. On the other hand, if process 0 can enter

critical section A and then attempt to enter critical section B, a deadlock may occur if another process attempts to enter the

critical sections in reverse order. The algorithm of Ricart and Agrawala itself does not contribute to the deadlock because

each critical section is treated independently of the others.

Exercise 3: Programming: Ricart/Agrawala (Mandatory exercise for 6 CP, submit via moodle!

) (87e)

Exercise 4: Multicast Order Guarantees (33e)

a) With a causally sorted multicast, message 3 must arrive in all processes (especially process p) after message 2 (since

3 causally depends on 2). Message 4 must also arrive in all processes (especially process r) after message 3.

p

r

q

s
2

4

3

1

Time

However, this does not guarantee total order (for example, process p: sequence 1,2,3,4; process s: sequence 2,3,1,4).

A total order would be provided if all messages from all processes were delivered in the same order.

1

https://moodle.uni-siegen.de/mod/assign/view.php?id=961757


p

r

q

s
2

4

3

1

Time

b) For the user to receive all publications, a reliable multicast is required.

A FIFO order is required so that a user’s posts, e.g. A. Bauer, are received everywhere in the same order. Users

can then consistently discuss A. Bauer’s “second posting”. Also, the second post might refer to the first one.

A causal order is also needed because the messages whose topics begin with Re: should appear after the messages

they refer to. Otherwise, delaying a message could cause the message Re: RPC Principle to appear before the

original message RPC Principle.

If the multicast delivery were totally ordered, the numbering in the left column would be consistent between users.

However, this is not absolutely necessary.

In practice, the USENET system, which emulates such a bulletin board, implements neither a causal nor a total

order. The communication effort required for this would far outweigh its advantages.

Exercise 5: Totally Ordered Multicast (50e)

A second approach is to send the message immediately via multicast, but to postpone delivery until the sequencer has

multicast a sequence number for it. This happens after the message is received by the sequencer.

A third approach is to first request a sequence number from the sequencer and then multicast the message.

The first approach (to send the operations to the sequencer) involves sending a point-to-point message with the operation

and a multicast message.

The second approach requires two multicast messages: one with the operation and one with the sequence number.

The third approach costs a point-to-point message with the sequence number followed by a multicast message containing

the operation.

Exercise 6: Causally Ordered Multicast (Mandatory exercise for 6 CP, submit via moodle!

) (37e)

2

https://moodle.uni-siegen.de/mod/assign/view.php?id=961757

