
Prof. Dr. rer. nat. Roland Wismüller

Excercise Sheet 4

Solution

Lecture Distributed Systems

Summer Term 2021

Exercise 1: Programming: Java-RMI - Follow-up example

You will find the solution to this problem in in the archive l04eFiles.zip1 on the lecture’s web page.

Exercise 2: Programming: Generic proxy objects

You will find the solution to this problem in in the archive l04eFiles.zip2 on the lecture’s web page.

Exercise 3: Generic dispatcher with Java Reflection

a) The request message must in any case contain the following information:

(i) an identifier for the object on which the method is to be called,

(ii) a specification of the method to be called,

(iii) the arguments for the method call.

In the simplest case, the object ID can be a sequence number. The server skeleton must then, for example, maintain

an array that contains references to all remote objects of the server.

The method to be called could be specified by its name. Due to the possibility of overloading, however, this

may not be sufficient, but the parameter types must also be specified. The Java class Class contains a method

getMethod(), which is used to find the corresponding Method object for a given name and the parameter

types.3 Since Method itself cannot be serialized, the message cannot directly contain the Method object.

The arguments for the method call are most easily transferred in Java as serialized objects. The arguments for RMI

must always be either serializable or remote objects. In the latter case, the associated stub object is serialized during

the call.

The Java data type for a query message could therefore look as follows:

public class RequestMessage implements Serializable

{

int objectID;

String methodName;

Class<?>[] argumentTypes;

Object[] arguments;

...

}

b) With the above query message type, the code for a generic dispatcher might look something like this:

1http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/vs/l04eFiles.zip
2http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/vs/l04eFiles.zip
3However, the parameter types must match the specified types exactly. In principle, the method could also be determined automatically from the

types of the passed arguments. However, these can be subclasses of the parameter types, so that the search for the suitable method is not trivial. The Java

class Class does not offer a method for this either.

1

http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/vs/l04eFiles.zip
http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/vs/l04eFiles.zip


public void dispatch(RequestMessage request)

{

try {

// Determine reference to target object from objectID

Object target = objectTable[request.objectID];

// Determine the appropriate Method object via the Class object

Method method = target.getClass().getMethod(request.methodName,

request.argumentTypes);

// Call method

Object result = method.invoke(target, request.arguments);

... pack result into reply message package and send back

}

catch (InvocationTargetException e) {

// Called method threw an exception

... pack e.getCause() into reply message package and send back

}

catch (Exception e) {

// Exception when calling the method (e.g. IllegalArgumentException)

... pack e into reply message package and send back

}

}

Exercise 4: Parameter passing

If call-by-reference is used, a pointer to i is passed to incr. This will increment i twice, so the end result in this case is

2.

With call-by-value the value is passed directly and no reference to i. Therefore i remains unchanged for the caller, i.e. 0.

Call-by-copy/result means: Copying the parameter values when calling the procedure, copying back and overwriting the

call parameters when the procedure is finished. In this case, i is passed as a value twice (i.e. 0 each) and incremented so

that both values are now 1. If they are copied back, the second copy overwrites the first and the final value is now also 1.

Exercise 5: Transparency of Java RMI

The solutions of the programming task can be found in the archive l04eFiles.zip4 on the lecture’s web page. The pro-

blem is the parameter passing in Java RMI, which has a call by value semantics for serializable objects (and ArrayList

is serializable). I.e., the server sorts the list correctly, but the result has no influence on the client.

To fix the problem, you might get the idea to make the list a remote object located at the client, so that the server

can modify it via RMI. However, since sorting an ArrayList results in an extremely large number of accesses, this

procedure would be extremely inefficient. It is therefore more efficient to realize a parameter passing with call by value

and result semantics by having the sort() method of the remote interface SortServer return the sorted list as the

return value and sort() method of the wrapper class copy this return value back to the original list.

4http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/vs/l04eFiles.zip

2

http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/vs/l04eFiles.zip

