

Rechnernetze I

SoSe 2025

Roland Wismüller
Universität Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Büro: H-B 8404

Stand: 1. April 2025

Rechnernetze I

SoSe 2025

10 Netzwerksicherheit

OSI: 1-7

Inhalt

- Sicherheitsanforderungen
- Sicherheitsprobleme der Internet-Protokolle
- Kryptographische Grundlagen
- Sicherheitsmechanismen für Protokolle
- Beispiele sicherer Protokolle
- Firewalls

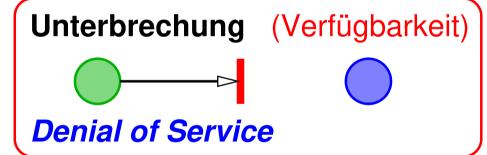
- Peterson, Kap. 8.1, 8.2, 8.3.1, 8.3.3, 8.4
- CCNA, Kap. 11.2

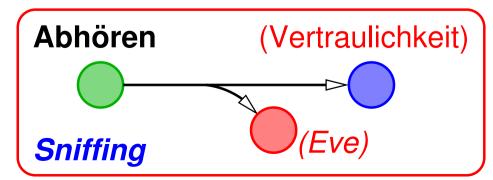
10.1 Sicherheitsanforderungen

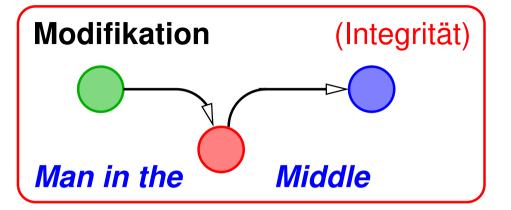
- In Netzwerken wird persönliche / wertvolle / vertrauliche Information übermittelt
 - Information sollte nur Berechtigen bekannt werden!
 - Authentizität der Information?
- Wachsende Bedeutung der Netzwerksicherheit wegen
 - steigender Vernetzung
 - höheres Angriffspotential
 - neuer Einsatzgebiete
 - z.B. e-Business: elektronische Zahlung / Verträge

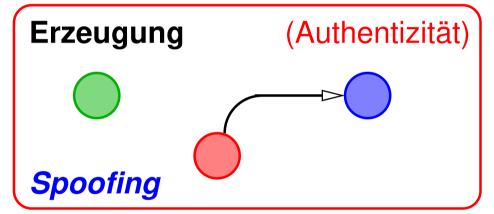
10.1 Sicherheitsanforderungen ...

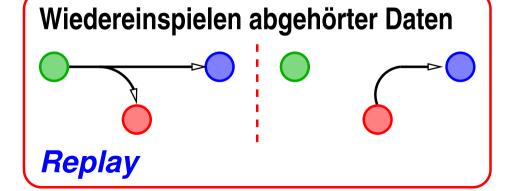

Allgemeine Sicherheitsanforderungen


- **→** (Informations-)Vertraulichkeit (*confidentiality*)
 - Schutz vor unautorisierter Informationsgewinnung
- (Daten-)Integrität (integrity)
 - Schutz vor unautorisierter Veränderung von Daten
- (Nachrichten-)Authentizität (message authenticity)
 - Urheber der Daten kann korrekt identifiziert werden
- Verbindlichkeit (nonrepudiation)
 - Handlungen können nicht abgestritten werden
- Verfügbarkeit (availability) von Diensten
- Anonymität der Kommunikationspartner


10.1 Sicherheitsanforderungen ...




Angriffe auf die Netzwerksicherheit



10.1 Sicherheitsanforderungen ...

Konkret: Alice sendet eine Nachricht an Bob

- Vertraulichkeit: niemand außer Alice und Bob erfahren den Inhalt der Nachricht
- Integrität: Bob kann sich (nach entsprechender Prüfung!) sicher sein, daß die Nachricht während der Übertragung nicht (absichtlich) verfälscht wurde
- Authentizität: Bob kann sich (nach entsprechender Prüfung!) sicher sein, daß die Nachricht von Alice gesendet wurde
- Verbindlichkeit: Alice kann nicht bestreiten, die Nachricht verfaßt zu haben D.h. Bob kann Dritten gegenüber beweisen, daß die Nachricht
 - D.h. Bob kann Dritten gegenüber **beweisen**, daß die Nachricht von Alice gesendet wurde
- → Im Folgenden: Beschränkung auf diese vier Anforderungen

Ein Problem des IP-Protokolls: IP-Spoofing

- Viele IP-basierte Protokolle vertrau(t)en der Absenderadresse
 - z.B. UNIX-Dienste rsh, rcp, rlogin*:
 - Festlegung von Trusted Hosts
 - Zugriff von Trusted Host aus auch ohne Paßwort
- Aber: Angreifer kann IP-Pakete mit beliebiger (falscher) Absenderadresse versenden
 - z.B. um vorzutäuschen, ein Trusted Host zu sein
- Problem: fehlende Authentifizierung der Pakete in IPv4

* Inzwischen nicht mehr in Verwendung!

Ein Problem des IP-Protokolls: IP-Spoofing ...

- IP-Spoofing ist Basis vieler anderer Angriffe
- Gegenmaßnahmen:
 - nicht auf Senderadresse vertrauen
 - → Router-Konfiguration: Source Address Validation
 - Prüfen, ob Paket mit angegebener Senderadresse aus dem jeweiligen Subnetz kommen kann
 - ► IPsec (neuer Internet-Standard): sichere Authentifizierung des Senders

Ein Problem durch Programmierfehler: Ping of death

- Fehler in der Implementierung des ping-Kommandos unter Windows 95:
 - → ping -1 65510 my.computer.de sendet ein fragmentiertes IP-Paket der Länge 65538
- Fehler in (alten Versionen) fast aller Betriebssysteme:
 - Pufferüberlauf im Betriebssystemkern beim Zusammenbau des Pakets
 - Absturz des Systems, Reboot, ...
- Problem: fehlende Validierung der Eingabe

Ein Problem des DNS: DNS-Spoofing

- Angreifer kann falsche Zuordnung zwischen Hostnamen und IP-Adresse in DNS-Servern installieren
 - Zugriffe auf diesen Host werden z.B. auf Rechner des Angreifers umgeleitet (= Man-in-the-Middle Attacke)
 - z.B. gefälschte Web-Sites, Ausspionieren von Kreditkarteninfo, Paßworten, ...
- Problem: keine Authentizierung
- Schadensbegrenzung: keine *recursive queries* zulassen
 - nur DNS-Cache eines Rechners kann infiziert werden
- → Lösungen: TSIG*, DNSSEC (IETF Standards)

* Transaction SIGnature

Angriff auf DNS: DNS-Spoofing

Alice

www.bob.de

DNS Server ns.alice.de

DNS Server ns.bob.de

DNS Server ns.eve.de

Angriff auf DNS: DNS-Spoofing

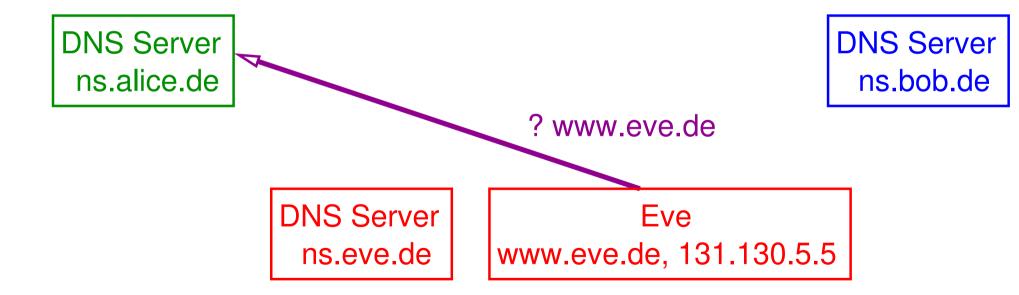
1. Ausspionieren der nächsten DNS Query-ID (qid)

Alice

www.bob.de

DNS Server ns.alice.de

DNS Server ns.bob.de


DNS Server ns.eve.de

Angriff auf DNS: DNS-Spoofing

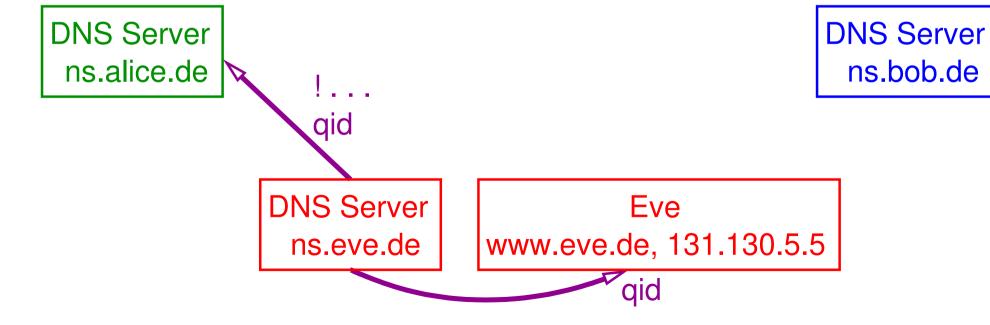
1. Ausspionieren der nächsten DNS Query-ID (qid)

Alice

Angriff auf DNS: DNS-Spoofing

1. Ausspionieren der nächsten DNS Query-ID (qid)

Alice



Angriff auf DNS: DNS-Spoofing

1. Ausspionieren der nächsten DNS Query-ID (qid)

Alice

Angriff auf DNS: DNS-Spoofing

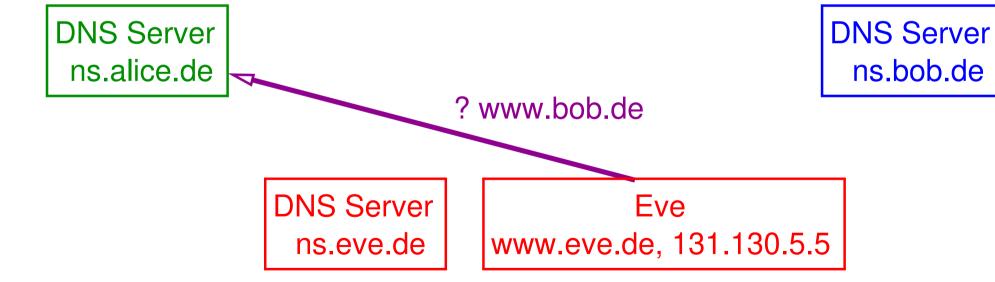
2. Falschen Eintrag im DNS Server erzeugen

Alice

www.bob.de

DNS Server ns.alice.de

DNS Server ns.bob.de


DNS Server ns.eve.de

Angriff auf DNS: DNS-Spoofing

2. Falschen Eintrag im DNS Server erzeugen

Alice

Angriff auf DNS: DNS-Spoofing

2. Falschen Eintrag im DNS Server erzeugen

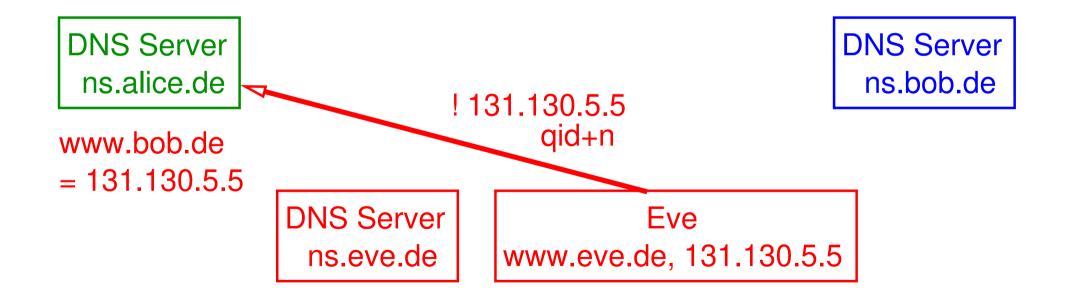
Alice

www.bob.de

DNS Server ns.alice.de

? www.bob.de qid+n

DNS Server ns.bob.de


DNS Server ns.eve.de

Angriff auf DNS: DNS-Spoofing

2. Falschen Eintrag im DNS Server erzeugen

Alice

Angriff auf DNS: DNS-Spoofing

2. Falschen Eintrag im DNS Server erzeugen

Alice

www.bob.de

DNS Server ns.alice.de

Zu spät! Antwort wird verworfen

!... qid+n

DNS Server ns.bob.de

www.bob.de = 131.130.5.5

DNS Server ns.eve.de

Angriff auf DNS: DNS-Spoofing

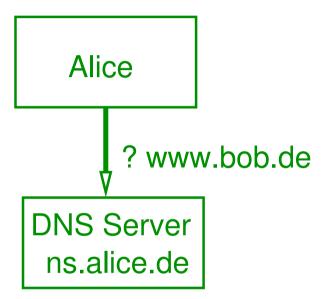
3. Alice kontaktiert Eve und glaubt es wäre Bob!

Alice

www.bob.de

DNS Server ns.alice.de

DNS Server ns.bob.de


www.bob.de = 131.130.5.5

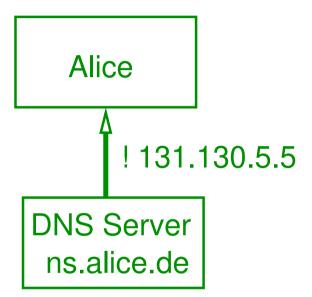
DNS Server ns.eve.de

Angriff auf DNS: DNS-Spoofing

3. Alice kontaktiert Eve und glaubt es wäre Bob!

www.bob.de

DNS Server ns.bob.de


www.bob.de = 131.130.5.5

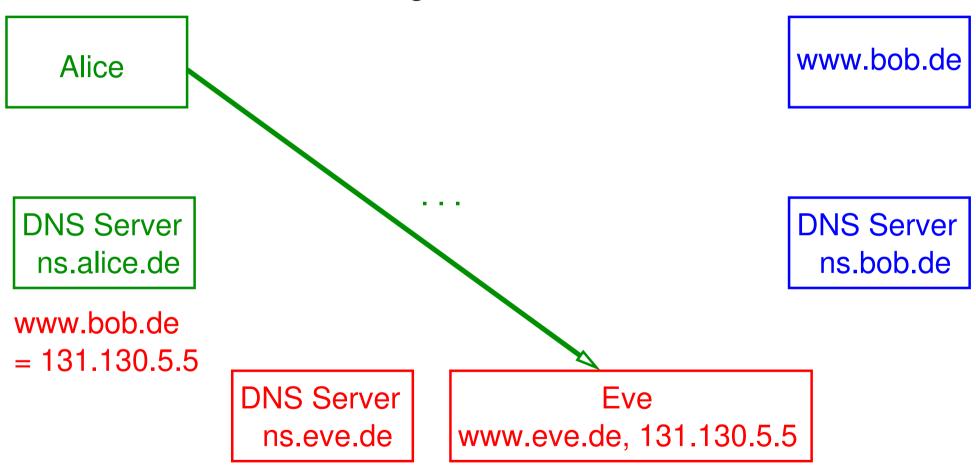
DNS Server ns.eve.de

Angriff auf DNS: DNS-Spoofing

3. Alice kontaktiert Eve und glaubt es wäre Bob!

www.bob.de

DNS Server ns.bob.de

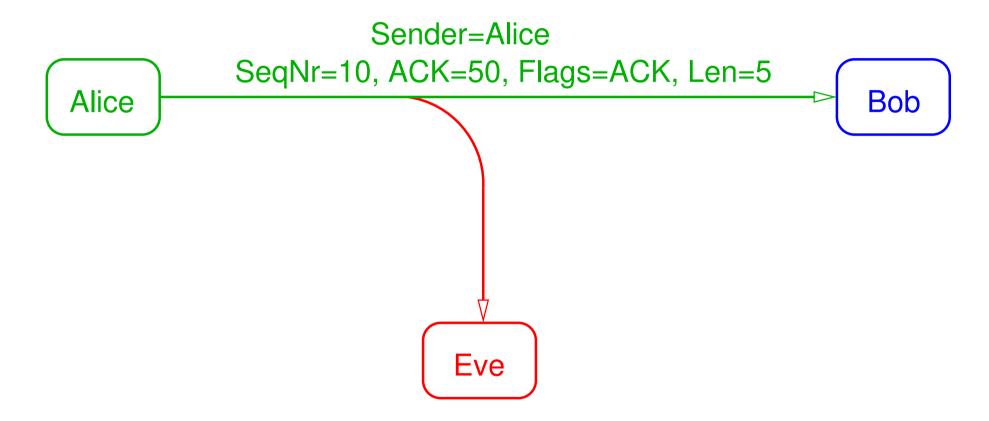

www.bob.de = 131.130.5.5

DNS Server ns.eve.de

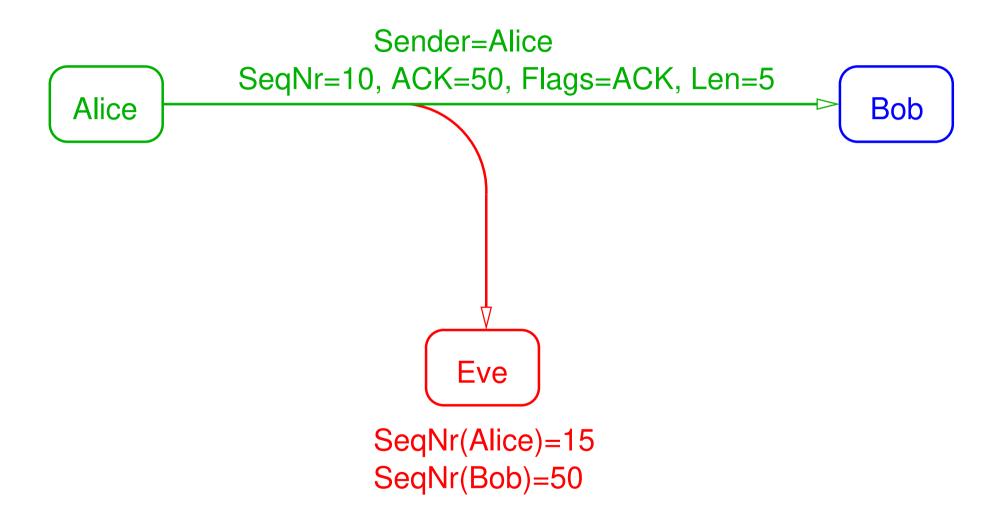
Angriff auf DNS: DNS-Spoofing

3. Alice kontaktiert Eve und glaubt es wäre Bob!

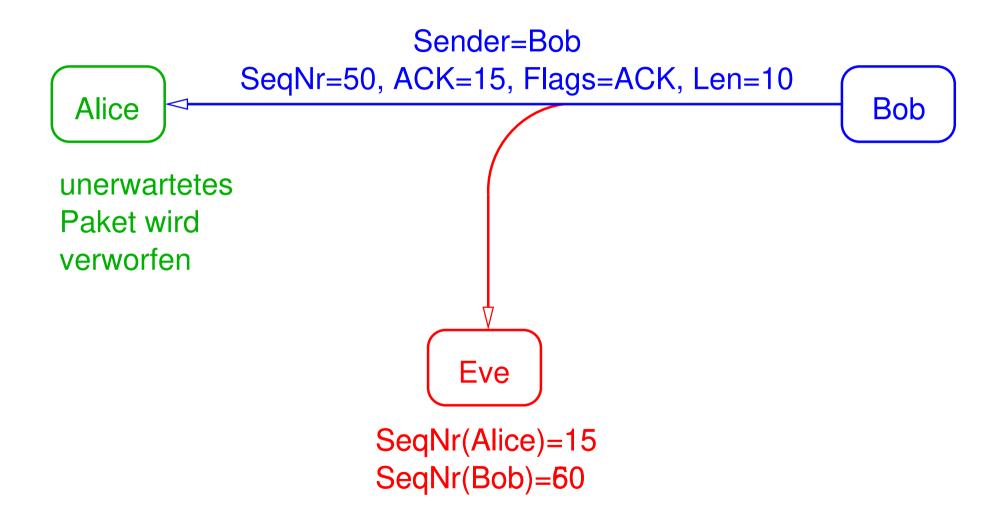
- "Feindliche Übernahme" einer offenen TCP-Verbindung
 - z.B. nach erfolgter Authentifizierung von Alice!
- → Angriff:
 - Senden eines gefälschten RST-Pakets (Verbindungsabbruch) an Alice
 - 2. Senden gefälschter Pakete an Bob, mit geschätzten oder abgehörten Sequenznummern
- Setzt i.d.R. Abhörmöglichkeit (z.B. Zugang zu lokalem Ethernet) voraus
 - Sequenznummern zählen die übertragenen Bytes


Ein Problem des TCP: Hijacking ...

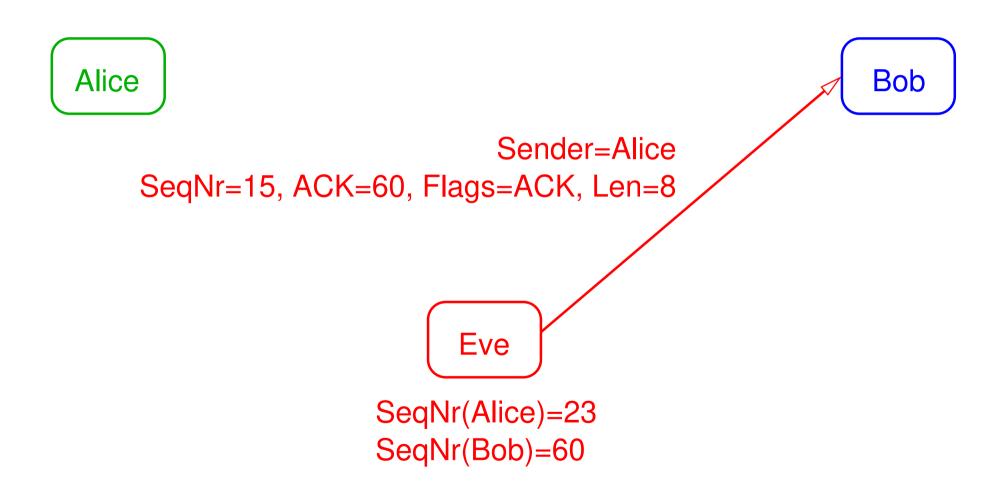
Alice


Bob

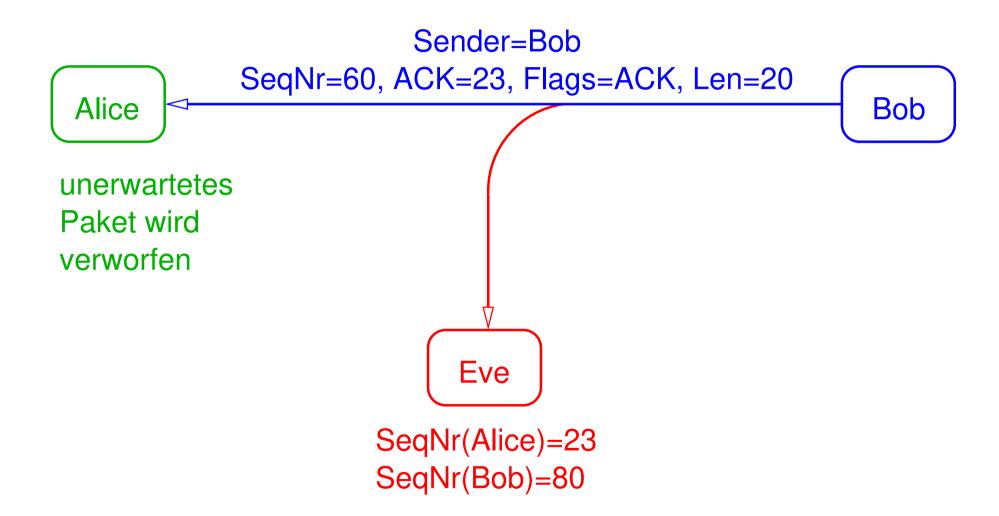
Eve

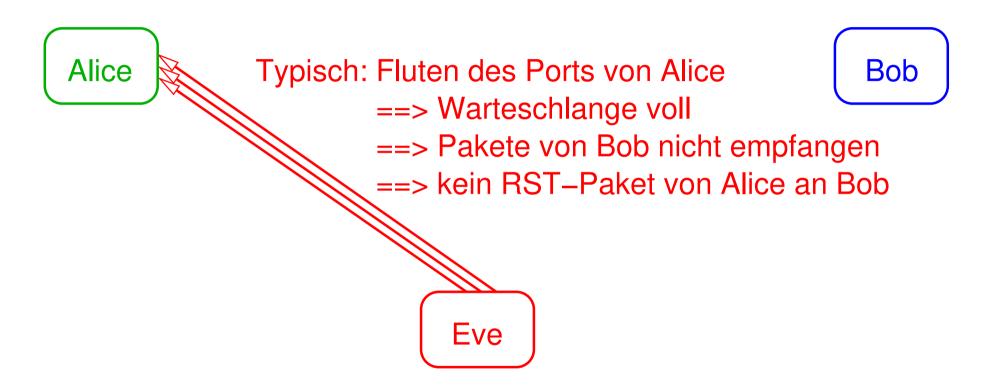


Ein Problem des TCP: Hijacking ...



Bob





Weitere problematische Protokolle

- UDP
 - Problem: fehlende Authentifizierung
 - "Fälschen" von UDP-Paketen viel einfacher als bei TCP
 - ⇒ Einige wichtige Dienste (DNS, NFS) basieren auf UDP
- → ICMP
 - Problem: fehlende Authentifizierung
 - erlaubt Abbrechen, Behindern und Umleiten von Verbindungen
- → ARP
 - Problem: keine Authentizierung
 - ARP ist zustandslos, akzeptiert Antwort von beliebigem Sender
 - Angreifer im lokalen Netz kann durch falsche ARP-Antwort Pakete zu sich umleiten (ARP Spoofing)

Weitere problematische Protokolle ...

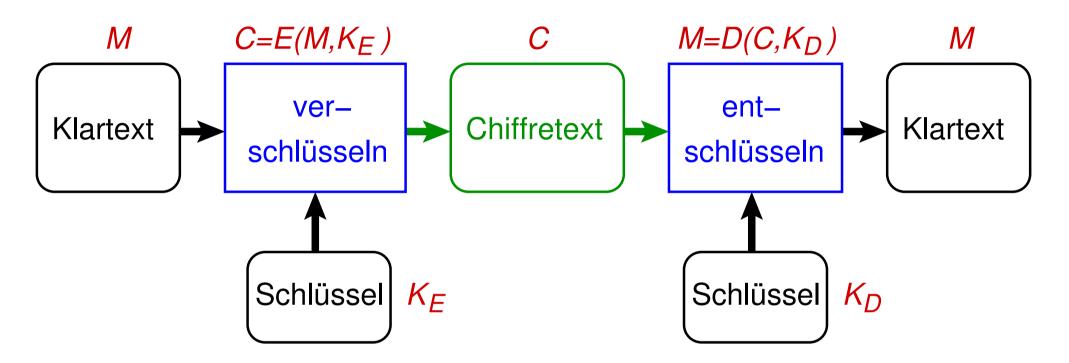
- ▶ NFS (Network File System)
 - Problem: Authentifizierung nur über Hostname/User-ID
 - Problem: ungeschützte Übertragung von Dateiinhalten und -handles
- NIS (Network Information System)
 - Zentrale Paßwortdatei für Rechner eines Netzes
 - Problem: keine Authentifizierung des Servers
 - → Problem: Zugriffskontrolle nur durch Domänen-Namen

10.2 Sicherheitsprobleme des Internets ...

Weitere problematische Protokolle ...

- rsh, rcp, rlogin, telnet, FTP (File Transfer Protocol)
 - Problem: Authentifizierung z.T. nur über Hostname/User-ID
 - Problem: ungeschützte Übertragung (incl. Paßworte!)
- → HTTP (HyperText Transport Protocol)
 - Problem: keine Authentifizierung des Servers
 - → Problem: ungeschützte Übertragung (auch Paßworte!)
- SMTP (Simple Mail Transport Protocol)
 - Problem: keine Authentifizierung des Absenders
 - → Problem: Übertragung / Zwischenspeicherung im Klartext

10.2 Sicherheitsprobleme des Internets ...


Fazit

- Die Standard-Internet-Protokolle (u.a. IP, TCP, DNS, ARP, NFS, HTTP, SMTP) erfüllen keine der in 10.1 genannten Sicherheitsanforderungen
- Hauptprobleme:
 - öffentliche Netze prinzipiell abhörbar
 - fehlende / unzureichende Authentifizierung
- → Abhilfe:
 - sichere Protokolle in der Anwendungsschicht:
 - SSL/TLS (HTTPS, FTPS), S/MIME, PGP, SSH, ...
 - sicheres IP-Protokoll (IPsec, siehe Rechnernetze II)
- Basis: kryptographische Verfahren

10.3 Kryptographische Grundlagen

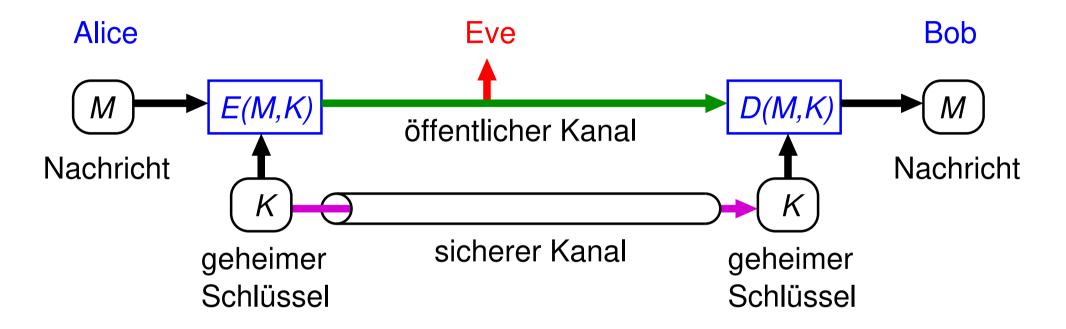
Grundprinzip der Verschlüsselung:

- Symmetrische Verschlüsselungsverfahren
 - $ightharpoonup K_E = K_D = K =$ gemeinsamer geheimer Schlüssel
- Asymmetrische Verschlüsselungsverfahren
 - $ightharpoonup K_E$ = öffentlicher, K_D = privater Schlüssel

10.3 Kryptographische Grundlagen ...

Anforderungen an Verschlüsselungsverfahren:

- Nur der Besitzer des geheimen bzw. privaten Schlüssels kann den Chiffretext entschlüsseln
- Sicherheit basiert nicht auf Geheimhaltung der Algorithmen


Mögliche Angriffe:

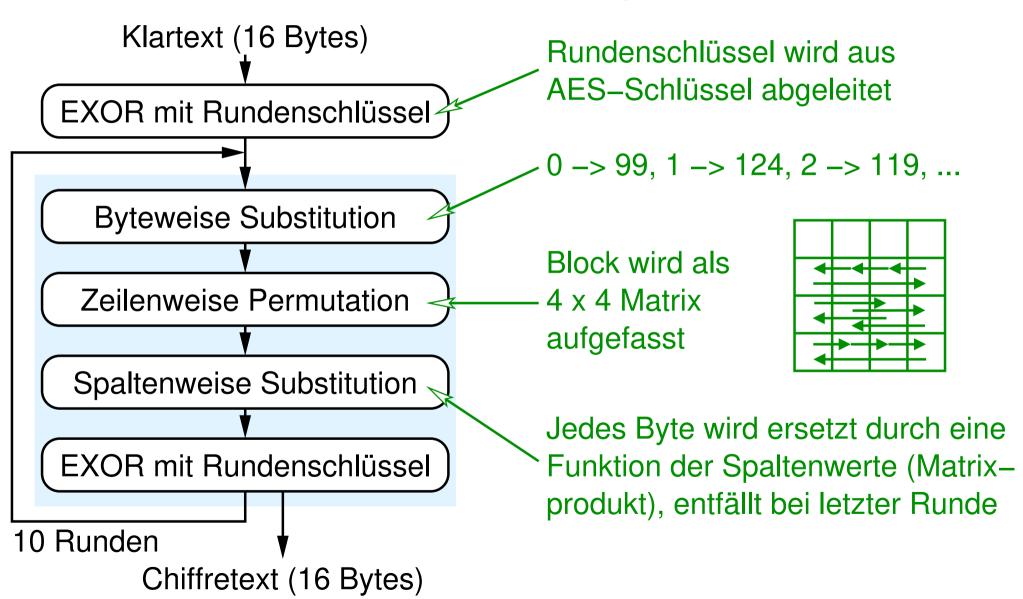
- → Klartext-Angriff: Klartext + Chiffretext ⇒ Schlüssel
- Im Idealfall: alle Schlüssel müssen durchprobiert werden
 - Schlüssel müssen lang genug sein!
- Bei asymmetrischen Verfahren auch effizientere Angriffe
 - ightharpoonup Berechnung von K_D aus K_E (\Rightarrow längere Schlüssel nötig)

10.3 Kryptographische Grundlagen ...

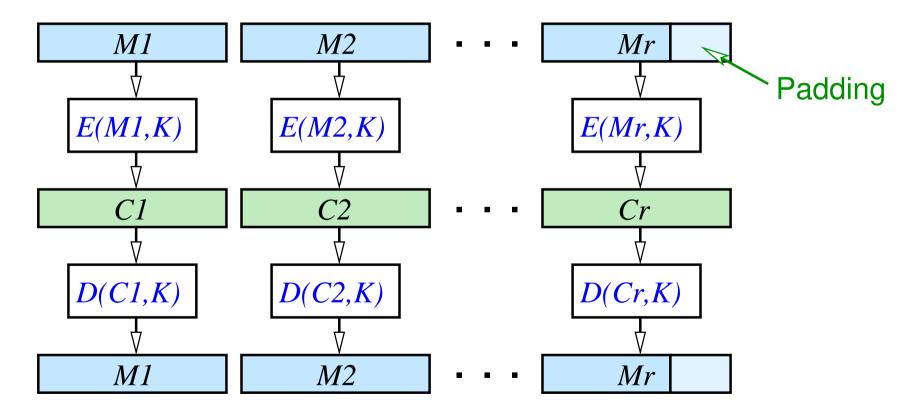
10.3.1 Symmetrische Verschlüsselung

- Symmetrische Verschlüsselung ist sehr effizient realisierbar
- Schlüssel sind relativ kurz (heute typisch 128-256 Bit)
- Problem: Austausch des Schlüssels K

Beispiele symmetrischer Verschlüsselungsverfahren:


- DES: veraltet, Schlüssel nur 56 Bit lang
- Triple-DES: veraltet, dreifache Anwendung von DES
 - effektive Schlüssellänge: 112 Bit
- → AES: Nachfolger von DES, 128-256 Bit Schlüssel
 - vom amerikanischen NIST standardisiert
 - in praktisch allen sicheren Protokollen verwendet / unterstützt
- ▶ IDEA: 128 Bit Schlüssel
 - freies Verfahren, benutzt z.B. in PGP

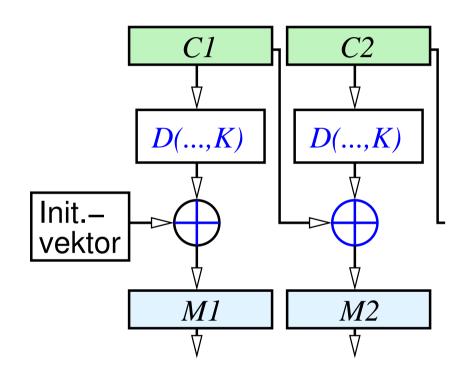
- Zwei verschiedene Arten symmetrischer Verfahren:
 - ➡ Blockchiffren ver-/entschlüsseln Blöcke von Zeichen mit einer fest vorgegebenen Größe (z.B. 128 Bit bei AES)
 - zu kleine Blöcke müssen aufgefüllt werden (Padding)
 - für Nachrichten beliebiger Größe: zusätzliche Betriebsmodi für den Umgang mit einer Folge von Blöcken
 - Stromchiffren ver-/entschlüsseln in einem Zeichenstrom jedes Zeichen einzeln
 - typisch: EXOR-Verknüpfung mit Pseudozufallsfolge
- Grundoperationen symmetrischer Blockchiffren:
 - Substitution: ersetze Bitgruppen systematisch durch andere Bitgruppen
 - Permutation: vertausche Bitgruppen nach festgelegtem Schema


Grobstrutkur von AES (Verschlüsselung)

Betriebsarten von Blockchiffren: *Electronic Code Book* (ECB)

- Klartext wird in Blöcke (z.B. 128 Bit) aufgeteilt, ggf. mit Padding
- Blöcke werden unabhängig voneinander ver-/entschlüsselt

Kein Schutz vor Löschung / Wiedereinspielung von Blöcken

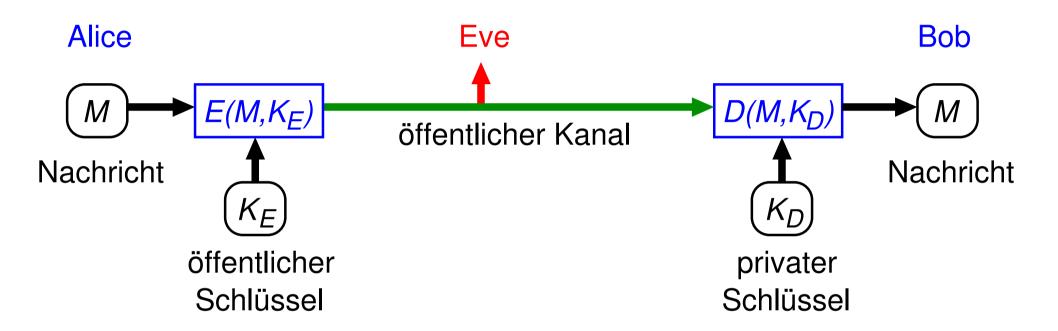

Betriebsarten von Blockchiffren: Cipher Block Chaining (CBC)

Verschlüsselung

Init.— EXOR V E(...,K) E(...,K)

C1

Entschlüsselung



- → Gleiche Klartextblöcke ⇒ verschiedene Chiffretextblöcke
- Fehlerfortpflanzung: Vorteil und Nachteil

10.3 Kryptographische Grundlagen ...

10.3.2 Asymmetrische Verschlüsselung

- \rightarrow Bob berechnet K_E aus K_D und veröffentlicht K_E
 - → Problem: Authentizität von K_E
- Weniger effizient als symmetrische Verfahren
- Längere Schlüssel nötig (heute typisch 2048-4096 Bit)

Basis asymmetrischer Verfahren:

- ➡ Einwegfunktionen (on-way functions):
 - ightharpoonup Berechnung von y = f(x) einfach
 - ightharpoonup Berechnung von $x = f^{-1}(y)$ praktisch unmöglich
- Beispiele:
 - ightharpoonup diskreter Logarithmus: $f(x) = a^x \mod p$, p prim
 - Verwendung z.B. im Diffie-Hellman-Schlüsselaustausch
 - Elliptic Curve Cryptography: verwendet "Elliptische Kurven über endlichen Körpern" als algebraische Struktur
 - erlaubt deutlich kürzere Schlüssel
 - Multiplikation großer Primzahlen vs. Faktorisierung
 - Verwendung z.B. in RSA
- Schwierigkeit der Berechnung der Umkehrfunktion nicht bewiesen

Diffie-Hellman-Schlüsselaustausch

- Frage: Wie können Alice und Bob über einen öffentlichen Kanal einen gemeinsamen geheimen Schlüssel K aushandeln?
- Gegeben sind öffentliche Elemente
 - q: Primzahl
 - \Rightarrow a: primitive Wurzel von q (a^n mod q durchläuft 1...q-1)

wähle
$$X_A < q$$
 Alice berechne $Y_A = a^{X_A} \mod q$ berechne $K = (Y_B)^{X_A} \mod q$ berechne $K = (Y_B)^{X_A} \mod q$

Problem: keine Authentifizierung!

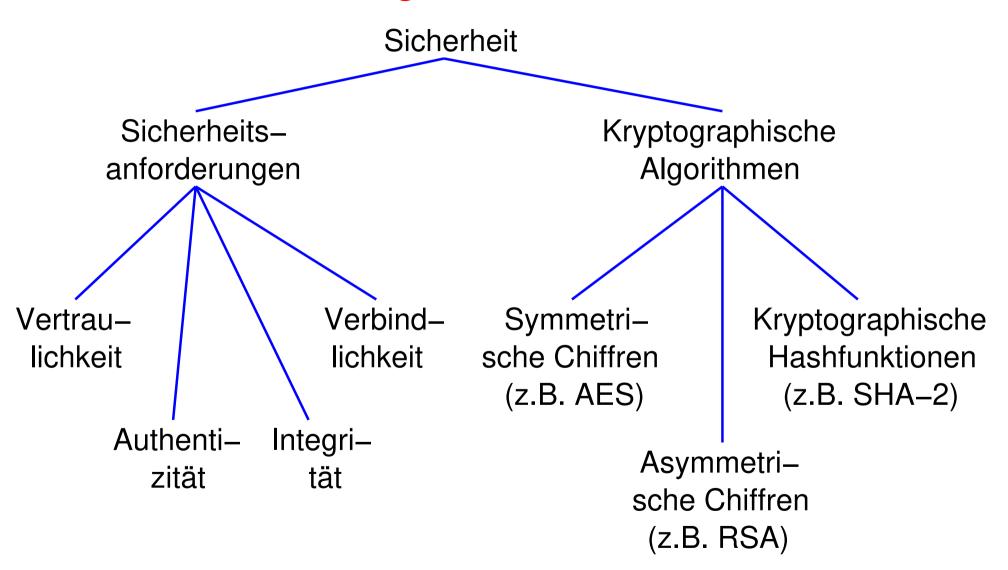
RSA (Rivest, Shamir, Adleman)

- Schlüsselgenerierung
 - ightharpoonup wähle große Primzahlen p und q, berechne Modul $n=p\cdot q$
 - ightharpoonup Euler'sche Zahl $\varphi(n)=(p-1)\cdot(q-1)$
 - ightharpoonup wähle e mit 1 < e < n und $ggT(\varphi(n), e) = 1$
 - ightharpoonup wähle d so, daß $e \cdot d \mod \varphi(n) = 1$
 - ightharpoonup öffentlicher Schlüssel $K_E=(e,n)$
 - ightharpoonup privater Schlüssel $K_D=(d,n)$
- Verschlüsseln und Entschlüsseln
 - ightharpoonup Klartextblock M als binärcodierte Zahl auffassen: M < n
 - ightharpoonup Verschlüsseln: $C = E(M, K_E) = M^e \mod n$
 - ightharpoonup Entschlüsseln: $M=D(C,K_D)=C^d \mod n$

RSA: Beispiel zum Nachrechnen

- Schlüsselerzeugung
 - $\Rightarrow p = 3, q = 11$
 - $\rightarrow n = p \cdot q = 33, \ \varphi(n) = (p-1) \cdot (q-1) = 2 \cdot 10 = 20$
 - ightharpoonup e = 3, damit $ggT(\varphi(n), e) = ggT(20, 3) = 1$
 - ightharpoonup Wähle d so, daß $e \cdot d \equiv 1 \mod \varphi(n), \ 3 \cdot d \equiv 1 \mod 20, \ d = 7$
 - ightharpoonup Öffentlicher Schlüssel $K_E=(3,33)$, privater $K_D=(7,33)$
- Verschlüsseln und Entschlüsseln
 - ightharpoonup Klartextnachricht M=5
 - $ightharpoonup C = E(M, K_E) = 5^3 \mod 33 = 125 \mod 33 = 26$
 - $ightharpoonup D(C, K_E) = 26^7 \mod 33 = 8031810176 \mod 33 = 5 = M$

10.3 Kryptographische Grundlagen ...

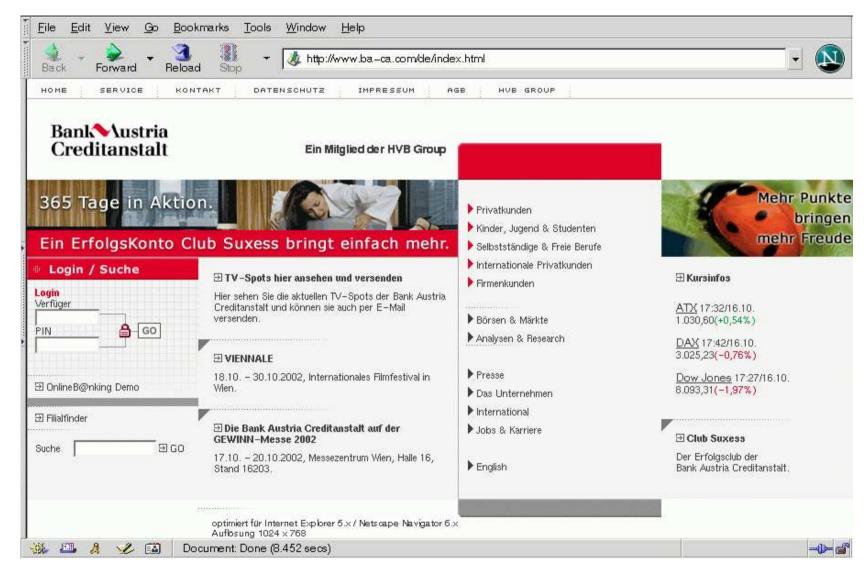

10.3.3 Kryptographische Hashfunktionen (*Message Digest*)

- Analog einer normalen Hashfunktion:
 - Nachricht wird auf einen Wert fester Größe abgebildet
- Zusätzliche Eigenschaft: Kollisionsresistenz
 - zu Nachricht x kann (in vernünftiger Zeit) keine andere Nachricht y mit gleichem Hashwert gefunden werden
- Einsatz zur Sicherung der Integrität
 - "kryptographische Prüfsumme"
- Beispiele
 - MD5 (Message Digest, Version 5): 128 Bit Hashwert, unsicher
 - SHA-1 (Secure Hash Algorithm 1): 160 Bit Hashwert, unsicher
 - SHA-2 / SHA-3: 224 512 Bit Hashwert

10.3 Kryptographische Grundlagen ...

10.3.4 Zusammenfassung

10.3.4 Zusammenfassung ...


Was leistet die reine Verschlüsselung von Nachrichten?

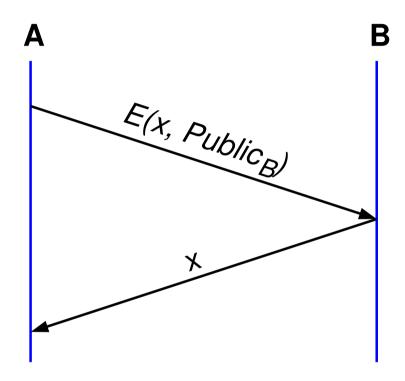
- Vertraulichkeit: ja
- Integrität: bedingt
 - nur, wenn Klartext genügend Redundanz aufweist
 - ⇒ ⇒ Verwendung von Message Digests
- Nachrichtenauthentizität:
 - \rightarrow **nein** bei asymmetrischen Verfahren: K_E öffentlich!
 - bedingt bei symmetrischer Verschlüsselung
 - nur mit gesicherter Integrität und Schutz vor Replay
- → Verbindlichkeit: nein
- Schutz vor Replay: nein
 - ⇒ ⇒ Transaktionszähler im Klartext + Integrität sichern

10.3.4 Zusammenfassung ...

Verschlüsselung muss auch richtig angewendet werden!

Die Seite ist von 2003 und wurde nach ca 3 Jahren(!) geändert

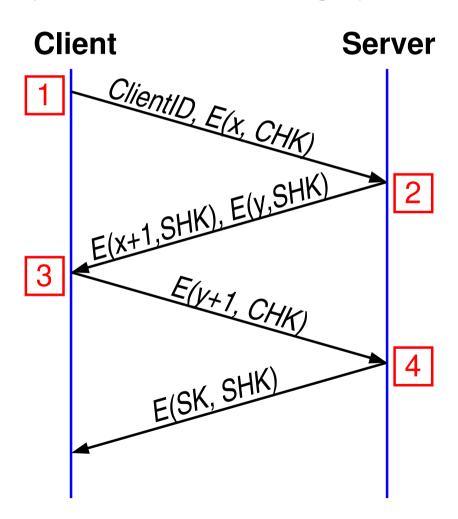
- Kryptographische Algorithmen sind nur Bausteine für die Netzwerksicherheit
- Zusätzlich benötigt: Mechanismen und Protokolle
- Einige Sicherheitsaufgaben:
 - Authentifizierung
 - von Kommunikationspartnern
 - "wer ist mein Gegenüber?"
 - von Nachrichten
 - "stammt die Nachricht wirklich vom Absender?"
 - Sicherung der Integrität von Nachrichten
 - Verbindlichkeit
 - Verteilung öffentlicher Schlüssel



Partner-Authentifizierung

- Kommunikationspartner authentifizieren sich gegenseitig
 - Beispiel: File-Server
 - Server authentifiziert den Client zur Prüfung der Schreib-/Leserechte
 - Client authentifiziert den Server zum Lesen/Schreiben sensibler Daten
- Manchmal auch nur einseitige Authentifizierung
 - Beispiel: WWW-Server
 - Client authentifiziert den Server zur Übertragung wichtiger / vertraulicher Daten

Partner-Authentifizierung über asymmetrische Chiffre



- Einseitige Authentifizierung von B
 - ightharpoonup ggf. authentifiziert sich A ebenso (\approx 3-Wege-Handshake)
- → *Public*^B nicht zum Verschlüsseln verwenden!

Partner-Authentifizierung mit Drei-Wege-Handshake

- Server kennt Schlüssel des Clients (z.B. Paßwort bei login)
- Client sendet ClientID und verschlüsselte Zufallszahl x (CHK: Client Handshake Key)
- 2. Server sucht den zu *ClientID* gehörigen Schlüssel *SHK*, sendet *x+1* und Zufallszahl *y*
- 3. Server ist authentifiziert (x+1)
- 4. Client ist authentifiziert (y+1), Server sendet Session Key SK für weitere Kommunikation

Sicherung der Nachrichtenintegrität und -authentizität

- Integrität: Kein Dritter soll Nachricht verfälschen können
 - setzt sinnvollerweise Nachrichten-Authentizität voraus
- → Bei Übertragung mit symmetrischer Verschlüsselung:
 - kryptographischen Hashwert H(M) an Klartext M anfügen und verschlüsseln
 - bei Modifikation des Chiffretexts paßt die Nachricht nicht mehr zum Hashwert
 - kein Angreifer kann neuen Hashwert berechnen / verschlüsseln
 - Nachrichten-Authentizität (bis auf Replay) durch symmetrische Chiffre sichergestellt
 - Replay-Schutz: Transaktionszähler / Zeitstempel in M

Sicherung der Nachrichtenintegrität und -authentizität ...

- Bei asymmetrischer Verschlüsselung:
 - Hash-Wert allein nützt nichts, da Nachrichten-Authentizität nicht sichergestellt ist
- Bei unverschlüsselter Übertragung (oft sind Daten nicht vertraulich, aber ihre Integrität wichtig):
 - Hash-Wert stellt Integrität nicht sicher, da jeder nach einer Modifikation der Nachricht den neuen Hash-Wert berechnen kann
- Lösungen:
 - kryptographischer Hashwert mit geheimem Schlüssel
 - digitale Signatur

Hashwert mit geheimem Schlüssel

- Einbeziehen eines (gemeinsamen) geheimen Schlüssels K in den Hashwert:
 - \rightarrow füge H(M + K) an Nachricht M an (+ = Konkatenation)
- Sichert auch Nachrichten-Authentizität (bis auf Replay)
 - \rightarrow kein Dritter kann H(M + K) korrekt berechnen
 - Replay-Schutz: Transaktionszähler / Zeitstempel in M
- Sichert nicht Verbindlichkeit
 - ➤ Empfänger kann *H(M + K)* berechnen
- ➡ Beispiel: HMAC-SHA-256

Digitale Signatur mit asymmetrischer Chiffre

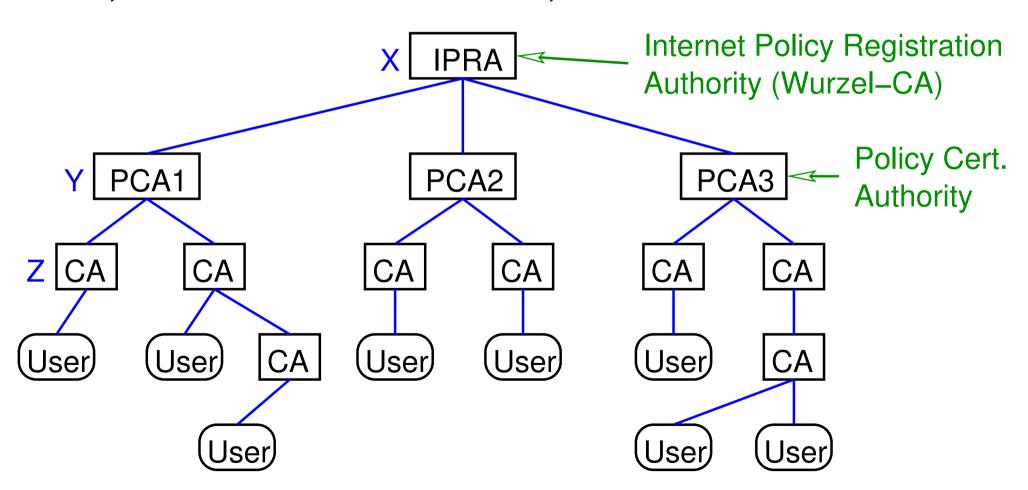
- \rightarrow Sender A sendet M und $E(M, Private_A)$ an Empfänger B
- \rightarrow B entschlüsselt mit *Public*_A und prüft, ob Ergebnis gleich M ist
- Problem: asymmetrische Verschlüsselung ist langsam
- Daher: Kombination mit kryptographisher Hashfunktion
 - digitale Signatur von A auf M dann: E(H(M), Private_A)
- Digitale Signatur sichert Integrität, Nachrichten-Authentizität (bis auf Replay) und Verbindlichkeit
 - nur A besitzt Private_A
 - Replay-Schutz: Transaktionszähler in M

Verteilung öffentlicher Schlüssel

- Problem: Übertragung des öffentlichen Schlüssels Public_A von A zu B
- Woher weiß B, daß Public_A authentisch ist?
 - zur Authentifizierung bräuchte B den Schlüssel von A ...
- Lösungen:
 - ⇒ Übertragung über andere Medien (persönlich, Post, ...)
 - Zertifikate (Certificates)

Zertifikat

Ich bestätige, daß der in diesem Dokument stehende öffentliche Schlüssel dem angegebenen Eigentümer gehört.


Gezeichnet: CA

- Die Zertifizierungsstelle (CA, Certification Authority) beglaubigt die Zuordnung zwischen einem öffentlichem Schlüssel und seinem Besitzer
 - durch digitale Signatur
- Nur noch der öffentliche Schlüssel der CA muß separat veröffentlicht werden

Zertifizierungshierarchie (z.B. bei HTTPS)

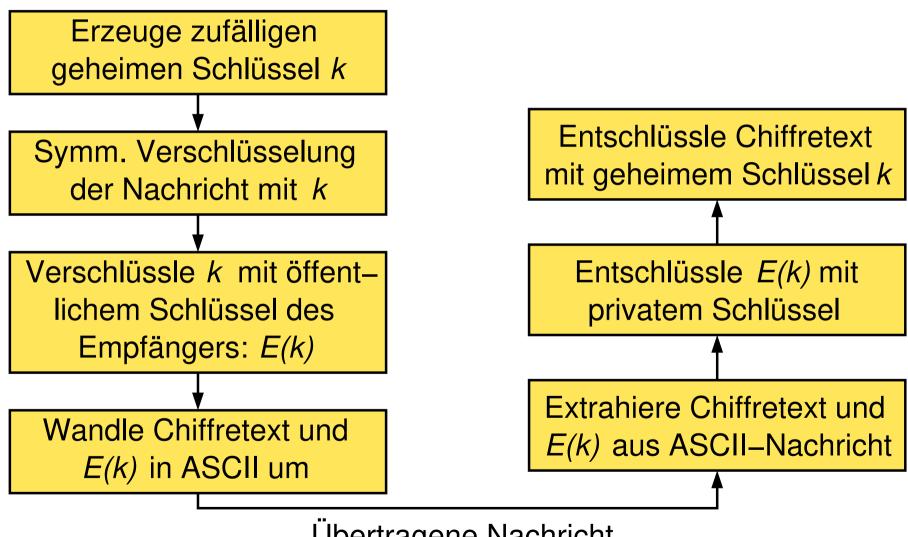
Vertrauenskette: X zertifiziert, daß Schlüssel von Y authentisch ist, Y zertifiziert Schlüssel von Z, ...

X.509 Zertifikate

- X.509: wichtiger Standard für Zertifikate
- Komponenten des Zertifikats:
 - Name der Person/Institution oder eines Rechners
 - ggf. auch Email-Adresse oder Domain-Name
 - öffentlicher Schlüssel der Person/Institution bzw. des Rechners
 - Name der CA
 - Ablaufdatum des Zertifikats (optional)
 - digitale Signatur der CA
 - über alle obigen Felder

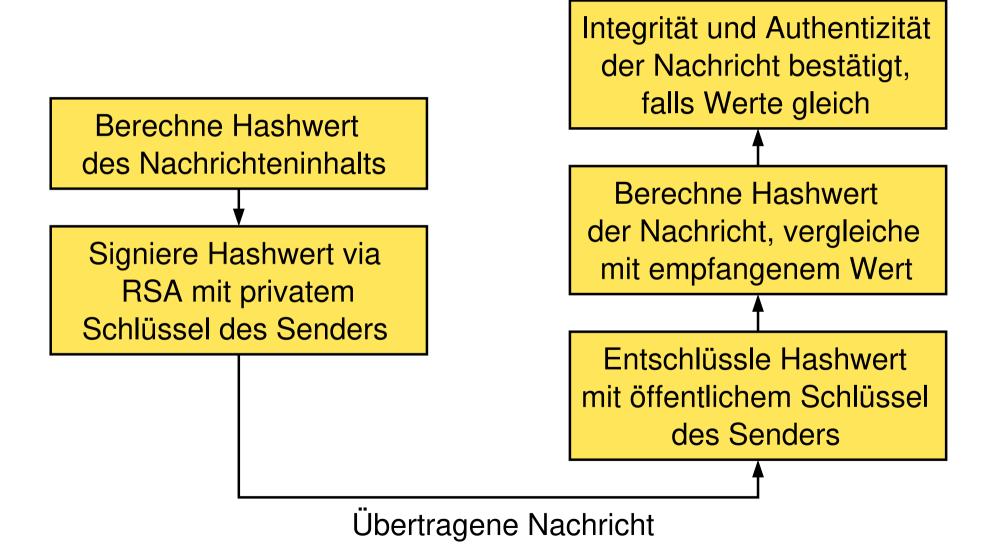
Invalidierung von Zertifikaten

- Zertifikate können beliebig kopiert und verbreitet werden
- Authentizität wird durch ein Zertifikat nur in Verbindung mit dem Besitz des privaten Schlüssels belegt
- Falls privater Schlüssel ausgespäht wurde:
 - Widerruf des Zertifikats nötig
- Einfache Möglichkeit:
 - Certificate Revocation List (CRL) Liste widerrufener Zertifikate, signiert von CA
 - Ablaufdatum begrenzt Länge der Liste



PGP (Pretty Good Privacy)

- Realisiert Vertraulichkeit, Integrität, Authentifizierung und Verbindlichkeit für Email
- Mechanismen: Verschlüsselung und digitale Signatur
 - einzeln oder kombiniert verwendbar
- Keine Zertifizierungsstellen bzw. –hierarchie
 - PGP-Benutzer zertifizieren die öffentlichen Schlüssel gegenseitig
 - mehrere Zertifikate möglich (höheres Vertrauen)
 - Vertrauensstufe des Schlüssels wird bei Email-Empfang angezeigt


PGP: Verschlüsselte Übertragung von Emails

Ubertragene Nachricht

PGP: Signierung von Emails

TLS (Transport Layer Security)

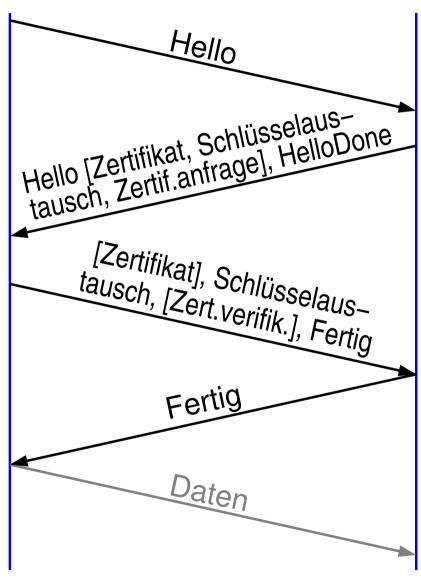
- Motivation: Sicherheit im WWW, z.B. für Kreditkartenzahlung
 - Vertraulichkeit (der Kreditkarteninformation)
 - Authentizität (des WWW-Servers)
 - Integrität (der Bestelldaten)
 - (Verbindlichkeit wird von TLS nicht gewährleistet)
- TLS ist ein Internet-Standard der IETF
 - Basis: ältere Realisierung SSL (Secure Socket Layer)
- TLS ist die Grundlage vieler sicherer Protokolle im WWW:
 - → z.B. HTTPS, FTPS, ...
 - realisiert durch eine zusätzliche Schicht

TLS: sichere Transportschicht

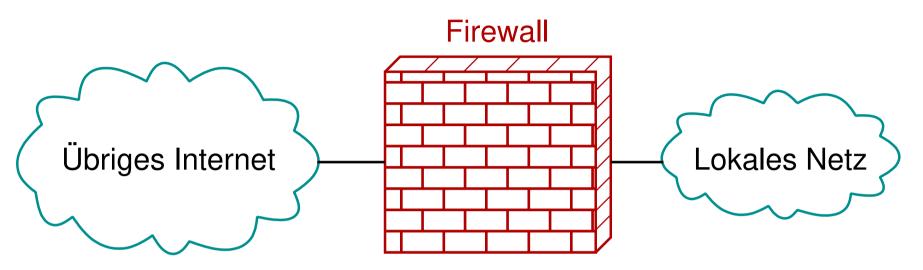
Anwendung (z.B. HTTP)
Sichere Transportschicht (TLS)
TCP
IP
Netzwerk

- Vorteil: unveränderte Anwendungsprotokolle
- Spezielle Ports, z.B. 443 für HTTPS
 - TLS gibt Daten von TCP an HTTP-Protokoll weiter (bzw. umgekehrt)

Wichtige TLS Teil-Protokolle:


- Handshake-Protokoll
 - beim Verbindungsaufbau
 - Aushandeln der kryptographischen Parameter:
 - Verfahren, Schlüssellänge, Sitzungsschlüssel, Zertifikate, Kompression
- Record-Protokoll
 - für die eigentlichen Daten
 - Fragmentierung, Kompression, Message Digests,
 Verschlüsselung, Transport (TCP)

TLS Handshake-Protokoll


- Bis zu 12 Nachrichten
- Aushandeln der kryptographischen Parameter notwendigerweise unverschlüsselt
- Man-in-the-Middle kann schwache Verschlüsselung aushandeln
- Anwendungen müssen auf Mindestanforderungen bestehen, ggf. Verbindungsabbruch

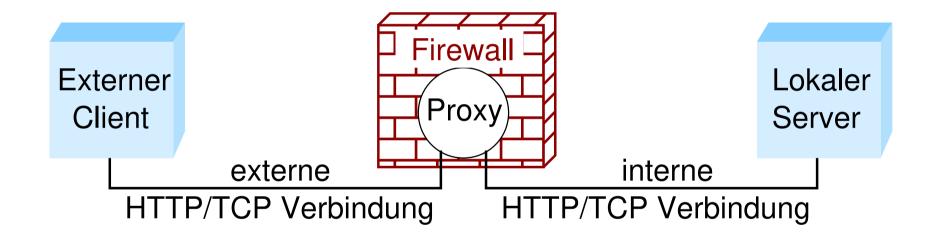
Client Server

10.6 Firewalls

- Firewall: Router mit Filterfunktion
 - kann bestimmte Pakete ausfiltern (verwerfen) und somit Zugriff auf bestimmte Hosts / Dienste unterbinden
 - wäre i.W. überflüssig, wenn alle Dienste sicher wären!
- Zwei Typen:
 - Filter-basierte Firewalls
 - Proxy-basierte Firewalls

10.6 Firewalls ...

Filter-basierte Firewalls


- Filtern nur aufgrund von Quell- und Ziel-IP-Adressen, Quell- und Ziel-Ports, übertragenem Protokoll, sowie ggf. der TCP-Flags
- Filterregeln z.B.
 - → deny tcp 192.12.0.0/16 host 128.7.6.5 eq 80
 - permit tcp any host 128.7.6.5 eq 25
- Frage: alles erlaubt, was nicht verboten ist, oder umgekehrt?
- Statische oder dynamische Regeln
 - z.B. FTP: neue Ports für jede übertragene Datei
- "Level-4-Switch": Firewall kennt Transport-Protokolle

10.6 Firewalls ...

Proxy-basierte Firewalls

- Proxy: Mittler zwischen Client und Server
 - für Client: Proxy ist Server, für Server: Proxy ist Client

- Proxy arbeitet auf Anwendungsschicht
 - kann auf der Basis des Nachrichteninhalts filtern
 - z.B. HTTP-Anfragen nach bestimmten Seiten nur von speziellen Hosts akzeptieren

Grenzen von Firewalls

- Kein Schutz interner Benutzer untereinander
- Nur begrenzter Schutz gegen mobilen Code (z.B. Email Wurm)
- Schutz von Teilen eines Netzes schwierig
- Angreifer kann sich in privilegiertes Netz "einschleichen"
 - z.B. bei drahtlosen Netzen
- Filterung über Sender-IP-Adresse/Port ist unsicher

Vorteil von Firewalls

Umsetzung einer Sicherheitsstrategie an zentraler Stelle

10.7 Zusammenfassung

- Sicherheitsanforderungen:
 - Vertraulichkeit, Integrität, Authentizität, Verbindlichkeit
 - Verfügbarkeit, Anonymität, ...
- IP, TCP, UDP erfüllen keine Sicherheitsanforderungen
 - Vertraulichkeit, Integrität, Authentizität
- Kryptographische Verfahren:
 - symmetrische und asymmetrische Chiffren
 - Kryptographische Hashes (Message Digest)
- Sicherheitsmechanismen
 - Authentifizierung (Kommunikationspartner, Nachrichten)
 - Integrität: Hashwerte mit Schlüssel, digitale Signatur
 - Verteilung öffentlicher Schlüssel: Zertifikate

10.7 Zusammenfassung ...

- → Sichere Protokolle, z.B. PGP, TLS (HTTPS), IPsec
- Firewalls

Fortsetzung:

- Rechnernetze-Praktikum (WiSe)
 - Aufbau von Netzen, Routing und Switching
 - PO 2012: B.Sc., Vertiefungspraktikum, 5 LP
 - → FPO 2021: B.Sc., Grundlagenpraktikum, 6 LP
- Rechnernetze II (SoSe)
 - weitere Netzwerktechnologien (Fast Ethernet, WLAN, ...)
 - Vertiefung (Routing, QoS, IPsec, ...)
 - → PO 2012: B.Sc., Wahlmodul, 5 LP
 - FPO 2021: M.Sc., Kernmodul, 6 LP