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About Myself d

w Studies in Computer Science, Techn. Univ. Munich
w Ph.D. in 1994, state doctorate in 2001

= Since 2004 Prof. for Operating Systems and Distributed Systems

= Research: Secure component based systems; Using generative
Al for teaching; Parallel and distributed systems

Head of Examination Board

!

E-mail: roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050

Room: H-B 8404

Office Hour: Mo., 14:15-15:15
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About the Chair “Operating Systems / Distrib. Sys.” "

Andreas Hoffmann w E-assessment and e-labs
andreas.hoffmann@uni-... w |T security
0271/740-4047 = \Web technologies
H-B 8405 = Mobile applications
Felix Breitweiser = Operating systems
felix.breitweiser@uni-... = Programming languages
0271/740-4719 = Virtual machines
H-B 8406
Sven Jacobs = E-assessment and e-labs
*T sven.jacobs@uni-... = Generative artificial intelligence
0271/740-2533 = \Web technologies
H-B 8407
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Teaching '-'
Lectures/Labs

= Rechnernetze |, 6 CP (Bachelor, summer term)
= Rechnernetze Praktikum, 6 CP (Bachelor, winter term)

= Rechnernetze Il, 6 CP (Master, summer term)

w Betriebssysteme und nebenlaufige Programmierung, 6 CP
(Bachelor, summer term)

= Parallel processing, 6 CP (Master, winter term)

= Distributed systems, 6 CP (Bachelor, winter term)
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Teaching ... [I

Project Groups

= e.g., secure cooperation of software components

= e.g., concepts for secure management of Linux-based thin clients

Theses (Bachelor, Master)

= Topic areas: secure virtual machine, parallel computing, pattern
recognition in sensor data, e-assessment, ...

Seminars

= Topic areas: IT security, programming languages, pattern
recognition in sensor data, ...

w Procedure: block seminar (30 min. talk, 5000 words paper)

= Master: attend the lecture “Scientific Working” beforehand!
= block course end of Feb. / beginning of March

=TT Roland Wismdiller .
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Notes for slide 6:

A note on external Master theses: The right to give you a topic for a Master thesis lies
with the University only!

This means, if you want to do a thesis at an external company or research institute,
you first have to find a professor who will supervise you, and then, if she or he is inter-
ested, the professor may define a topic together with the company.

Please have a look at our handout on conducting external theses!?

dhttps://www.eti.uni-siegen.de/dekanat/pruefungsamt/dokumente/studien
ganguebergreifend/externe-abschlussarbeiten-eti_en.pdf
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About the Lecture "

Lecture
= Mon., 12:15-13:45, AR-B 2104/05

w on 08.10., 15.10., 22.10., and 29.10. also in the lab slot!
w Tue., 10:15-11:45, H-C 6321

Practical labs

= Preferrably at home
= if necessary, you can also use the PC lab room H-A 4111
w Tutor: Felix Breitweiser (felix.breitweiser@uni-siegen.de)
= Questions and help: via Discord server
= https://discord.gg/UZTv8yptq]
w Discussion of solutions: Tue., 10:15-11:45, H-C 6321
= only on the due date of an assignment!
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About the Lecture ... n

Information, slides, and announcements
= See the WWW page for this course
= http://www.bs.informatik.uni-siegen.de/lehre/pv/

= Annotated slides (PDF) available; maybe slightly modified

Moodle course
= https://moodle.uni-siegen.de/course/view.php?id=23366
= Recorded screen casts of the lecture (from winter term 2020/21)

= Submission of lab assignments
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About the Lecture ...

Discord invite link
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About the Lecture ...

Parallel Processing (1/15)

Link to course’s homepage

=7" Roland Wismliller
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Parallel Processing (1/15)
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About the Lecture ... ‘I

Learning targets

= Knowing the basics, techniques, methods, and tools of parallel
programming

= Basic knowledge about parallel computer architectures
= Practical experiences with parallel programming

= Knowing and being able to use the most important programming
models

= Knowing about the possibilities, difficulties and limits of parallel
processing

= Being able to identify and select promising strategies for
parallelization

= Focus: high performance computing

=TT Roland Wismdiller .
—== Betriebssysteme / verteilte Systeme Parallel Processing (1/15) 11

About the Lecture ... n

Methodology

= | ecture: Basics
= theoretical knowledge about parallel processing
= practical introduction to programming environments
= “hands-on” tutorials

w [ ab: practical use
= independent programming work
= practical skills and experiences
= in addition: raising questions
= different parallelizations of two representative problems

= jterative, numerical method (Jacobi, Gauss/Seidel)
= combinatoral search (Sokoban)

==T" Roland Wismdiller .
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Registration for “Course Achievement” (Studienleistunﬂ

= Passing the course requires successful completion of the lab:
= i.e., qualified attempt for all mandatory exercises
w Exam Regulations 2012: prerequisite for the exam!

= You must register for the
= “Coursework Parallel Processing” 4INFMA024-S, or
= “PrOfungsvorleistung” 822120-S
in unisono before you can submit a solution! (do it right now!)
= independent of the registration to the course and the lab!
= if you cannot complete the course: deregister again!

L i AINFMAD24-VG1 - Parallel Processing (Lecture) - rec. S. 1 - Compulsory

Fo E' i AINFMAD24-VG2 - Parallel Processing (Lab) - rec. 5. 1 - Compulsory

[
hpv

=== Roland Wismduiller .
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Notes for slide 13:

If you are not registered for the course achievement, you will not be able to submit any
solutions in the Moodle plattform (the corresponding section will not be available in
Moodle).

Since data is transferred between unisono and Moodle only about once a week, you
should register way in advance!
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Examination

= Written examination (60 minutes)

= electronic exam, computers provided by university
= subject matter: lecture and labs!
= examination also covers the practical exercises

= Application via unisono

= at least two weeks before the exam date (hard deadline!)
= exam date is published via unisono and course web page

= if you study Computer Science with Exam Regulations 2012,
you first must have your mentor’s approval

= be sure to meet the deadline!

=== Roland Wismduiller :
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Organisational Issues regarding the Labs n

-

-

!

Assignments should be done at home, if possible
Programming is done in C/C++

|deally, you need a Linux-PC with the GNU-compilers (gcc/g++)

= \Windows with MSVC will also work, except for one exercise
sheet

In addition, you need to install MPI, preferrable MPICH

w see https://www.mpich.org/downloads

Four exercise sheets
w code must be submitted via Moodle in due time
= different requirements depending on 5 CP vs. 6 CP

==T" Roland Wismdiller .
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https://moodle.uni-siegen.de/course/view.php?id=23366

Contents of the Lecture

= Repetition / Foundations
w C/C++ for Java programmers
= Threads and synchronisation
w C++ threads

= Basics of Parallel Processing
w Motivation, Parallelism
= Parallelization and Data Dependences
= Parallel Computers
= Programming Models
= Organisation Forms for Parallel Programs
= Performance Considerations
= Design Process

=== Roland Wismduiller .
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Contents of the Lecture ...

= Parallel Programming with Shared Memory
= Basics
= OpenMP

= Parallel Programming with Message Passing
= Approach
- MPI

w Optimization Techniques
= Cache Optimization
= Optimization of Communication

=== Roland Wismduiller .
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Time Table of Lecture and Labs [I

‘

Until October, 29th: only lectures (Mon. + Tue.), no lab

‘

Then: lectures (Mon.) and lab (home work + Tue.)

‘

Last two weeks: only lab

= Prospective due dates for the assignments:
w (05.11.: Exercise sheet 1
- (see web page)
w 28.01.: Exercise sheet 8

= On due date: presentation and discussion of assignments in

H-C 6321
- ::.:.'_':: Egtlﬁggsvsv)i/i?é%lee ' verteilte Systeme Parallel Processing (1/15) 18
General Literature n

= Currently no recommendation for a all-embracing text book

= Barry Wilkinson, Michael Allen: Parallel Programming. internat.
ed, 2. ed., Pearson Education international, 2005.

= covers most parts of the lecture, many examples
= short references for MPI, PThreads, OpenMP
w A. Grama, A. Gupta, G. Karypis, V. Kumar: Introduction to Parallel
Computing, 2nd Edition, Pearson, 2003.
= much about design, communication, parallel algorithms
= Thomas Rauber, Gudula Ringer: Parallele Programmierung.
2. Auflage, Springer, 2007.
= architecture, programming, run-time analysis, algorithms

==T" Roland Wismdiller .
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General Literature ... ‘I

w Theo Ungerer: Parallelrechner und parallele Programmierung,
Spektrum, Akad. Verl., 1997.

= much about parallel hardware and operating systems
= also basics of programming (MPI) and compiler techniques
= |an Foster: Designing and Building Parallel Programs,
Addison-Wesley, 1995.
= design of parallel programs, case studies, MPI
w Seyed Roosta: Parallel Processing and Parallel Algorithms,
Springer, 2000.
w mostly algorithms (design, examples)
= also many other approaches to parallel programming

=77 Roland Wismliller .
$=-Z% Betriebssysteme / verteilte Systeme Parallel Processing (1/15) 20

Literature for Special Topics n

= S. Hoffmann, R.Lienhart: OpenMP, Springer, 2008.
= handy pocketbook on OpenMP

= W. Gropp, E. Lusk, A. Skjellum: Using MPI, MIT Press, 1994.
= the definitive book on MPI

w D.E. Culler, J.P. Singh: Parallel Computer Architecture - A
Hardware / Software Approach. Morgan Kaufmann, 1999.
= UMA/NUMA systems, cache coherency, memory consistency

= Michael Wolfe: Optimizing Supercompilers for Supercomputers,
MIT Press, 19809.

w details on parallelizing compilers

==T" Roland Wismdiller .
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1 Repetition / Foundations
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1 Repetition / Foundations ...

22

Contents
w C/C++ for Java programmers
= Threads and synchronisation

w C++ threads

=T Roland Wismdiller :
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1.1 C/C++ for Java Programmers "

1.1.1 Fundamentals of C++

= Commonalities between C++ and Java:
= imperative programming language
= syntax is mostly identical
w Differences between C++ and Java:
= C++ is not purely object oriented
= C++ programs are translated directly to machine code (no
virtual machine)
= Usual file structure of C++ programs:
= header files (*.h) contain declarations
= types, classes, constants, ...
= source files (*.cpp) contain implementations
= methods, functions, global variables

=== Roland Wismduiller :
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1.1.1 Fundamentals of C++ ... n

Compilation of C++ programs

Initialisation code
init memory
call main()

return result

Header files
(Include files)

Pre— | Compiler Linker
X.cpp processo>r - X.0 P> hello
Source file(s) Source file(s) Object file(s) Executable

program

= Preprocessor: embedding of files, expansion of macros

w Linker: binds together object files and libraries

==T" Roland Wismdiller .
*_1* Betricbssysteme / verteilte Systeme Parallel Processing (1/15) 25



1.1.1 Fundamentals of C++ ... ‘I

Compilation of C++ programs ...

= |nvocation of the GNU C++ compiler:
= g++ -Wall -o <output-file> <source-files>
= executes preprocessor, compiler and linker
w -Wall: report all warnings
= -0 <output-file>: name of the executable file

= Additional options:
= —g: enable source code debugging
= -0: enable code optimization
w -1<library>: link the given library
-

-c: do not execute the linker
= |ater: g++ -0 <output-file> <object-files>

£ .... 3 Egtlﬁggs\/sv}iggi%lg " verteilte Systeme Parallel Processing (1/15) 26
1.1.1 Fundamentals of C++ ... n

An example: Hello World! (v= 01/hello.cpp)

#include <iostream> // Preprocessor directive: inserts contents of file
//’iostream’ (e.g., declaration of cout)

using namespace std; //Importall names from namespace ’'std’

void sayHello() { // Function definition
cout << "Hello World!'\n"; // Printa textto console
ks
int main() { // Main program
sayHello () ;
return O; // Convention for return value: 0 = OK, 1,...,255: error
}

w Compilation: g++ -Wall -o hello hello.cpp

w Start: ./hello

==T" Roland Wismdiller .
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1.1.1 Fundamentals of C++ ... ‘I

Syntax

= |dentical to Java are among others:
= declaration of variables and parameters
= method calls
w control statements (if, while, for, case, return, ...)
= simple data types (short, int, double, char, void, ...)

= deviations: bool instead of boolean; char has a size of
1 Byte

w virtually all operators (+, *, %, <<, ==, ?7:, ...)
= Very similar to Java are:

- arrays

w class declarations

=== Roland Wismduiller :
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1.1.2 Data types in C++ n

Arrays

= Declaration of arrays
= only with fixed size, e.g.:
int ary1[10]; // int array with 10 elements

double ary2[100] [200]; // 100 x 200 array
int ary3[] = { 1, 2 }; /intarray with 2 elements

= for parameters: size can be omitted for first dimension
int funct(int aryl[], double ary2[][200]) { ... }

= Arrays can also be realized via pointers (see later)
= then also dynamic allocation is possible

= Access to array elements
w like in Java, e.g.: alil[j] = bl[i] * c[i+1]1[j];
= but: no checking of array bounds!!!

==T" Roland Wismdiller .
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1.1.2 Datatypes in C++ ... ‘I

Classes and objects

= Declaration of classes (typically in .h file):

class Example {

private: // private attributes/methods
int attril; // attribute
void pmeth(double d); // method
public: // public attributes/methods
Example () ; // default constructor
Example(int i); // constructor
Example (Example &from); //copy constructor
“Example () ; // destructor
int meth(); // method
int attr2; // attribute
static int sattr; // class attribute
+;
TEEEE Botnobseyaieme ! verteilte Systeme Parallel Processing (1/15) 30
1.1.2 Data types in C++ ... n

Classes and objects ...

= Definition of class attributes and methods (. cpp file):
int Example::sattr = 123; // class attribute

Example: :Example(int i) { // constructor
this->attrl = i;

+

int Example::meth() { // method
return attri;

+

= gspecification of class name with attributes and methods
= geparator :: instead of .
w this is a pointer (= 1.1.3), thus this—>attri1

= alternatively, method bodies can also be specified in the class
definition itself

=== Roland Wismduiller :
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1.1.2 Data types in C++ ...

Classes and objects ...

= Declaration of objects:
{

Example ex1; // initialisation using default constructor
Example ex2(10); // constructor with argument

} // now the destructor for ex1, ex2 is called

w Access to attributes, invocation of methods

exl.attr2 = ex2.meth();
j = Example::sattr; // class attribute

= Assignment / copying of objects
exl = ex2; // object is copied!
Example ex3(ex2); // initialisation using copy constructor

=== Roland Wismduiller .
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1.1.2 Data types in C++ ...

32

Templates

= Somehow similar to generics in Java

= j.e., classes (and methods) may have type parameters
= however, templates are more powerful (and complex) than

generics

= Main goal: allow to implement generic classes / data structures,

e.g., lists

= Usage of templates:
std::1list<int> intlist; // List of integers

intlist.push_back(42); // Add at the end of the list

int i = intlist.front(); // First element
std::1list<double> dbllist; // Listof doubles
dbllist.push_back(3.1415);

==T" Roland Wismdiller :
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1.1.3 Pointers ‘I

Variables in memory

= Reminder: variables are stored in main memory

short int myVar = 42;

00101010{00000000 RAM
100 101 102 103 104 105 Address

= 3 variable gives a name and a type to a memory block
= here: myVar occupies 2 bytes (short int) starting with
address 102
= A pointer is a memory address, together with a type
= the type specifies, how the memory block is interpreted

=== Roland Wismduiller .
$=-Z% Betriebssysteme / verteilte Systeme Parallel Processing (1/15) 34

Notes for slide 34:

C++ also has the concept of references and so called smart pointers. Since these
concepts are not needed to solve the lab assignments, they are not discussed here.
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1.1.3 Pointers ... "

(Animated slide)

Declaration and use of pointers

= Example:
int myAge = 25; // an int variable
int *pAge; // a pointer to int values
pAge = &myAge; // pAge now points to myAge
*pAge = 37; // myAge now has the value 37
PAge myAge
® > 37

= The address operator & determines the adress of a variable
= The access to *pAge is called dereferencing pAge

= Pointers (nearly) always have a type

= e.0. int *, Example *, char *x, ...

=== Roland Wismduiller :
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Wirtschaftsingenieurwesen,

Wirtschaftsinformatik, Informatik

E@B Preisgelder

— flir die ersten drei Platze

“Creativity is
Intelligence
having Fun”

- Alber Elnstein
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1.1.3 Pointers ... "

Passing parameters by reference
= Pointers allow to pass parameters by reference

= |nstead of a value, a pointer to the values is passed:

void byReference (Example *e, int *result) {
*result = e—->attr2;

}

int main() {
Example obj(15); // obj is more efficiently
int res; /I passed by reference

byReference (&obj, &res); // resisaresult parameter

w short notation: e->attr2 means (xe) .attr2

=== Roland Wismduiller :
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1.1.3 Pointers ... n

void pointers and type conversion

= C++ also allows the use of generic pointers
= just a memory addess without type information
= declared type is void * (pointer to void)

w Dereferencing only possible after a type conversion
= caution: no type safety / type check!

= Often used for generic parameters of functions:
void bsp(int type, void *arg) {
if (type == 1) {
double d = *(double *)arg; // arg mustfirst be converted
/I to double *
} else {

int i = *(int *)arg; // int argument

==T" Roland Wismdiller .
*_1* Betricbssysteme / verteilte Systeme Parallel Processing (2/15) 37



1.1.3 Pointers ... "

Arrays and pointers

= C++ does not distinguish between one-dimensional arrays and
pointers (with the exception of the declaration)

= (Consequences:
w array variables can be used like (constant) pointers
= pointer variables can be indexed

int al3] = {1, 2, 3 };

int b = *a; // equivalent to: b = al[0]

int ¢ = *x(a+1); // equivalent to: ¢ = al[1]

int *p = a; // equivalent to: int *p = &al[0]
int d = p[2]; //d = al[2]

=== Roland Wismduiller :
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1.1.3 Pointers ... n

Arrays and pointers ...

= Consequences ...:
= arrays as parameters are always passed by reference!

void swap(int al[], int i, int j) {
int h = al[i]; //swap ali] and a[j]
ali]l = alj];
aljl = h;

+

int main() {
int ary[] = { 1, 2, 3, 4 };
swap (ary, 1, 3);
//mow: ary[1l] = 4, aryl[3] = 2;

+

==T" Roland Wismdiller .
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1.1.3 Pointers ... "

Dynamic memory allocation

= Allocation of objects and arrays like in Java
Example *p = new Example(10);
int *a = new int[10]; // a is not initialised!
int *b = new int[10] O); // b is initialised (with 0)

= allocation of multi-dimensional arrays does not work in this way

= |mportant: C++ does not have a garbage collection

= thus explicit deallocation is necessary:
delete p; // single object
deletel] a; //array

= caution: do not deallocate memory multiple times!

=== Roland Wismduiller :
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1.1.3 Pointers ... n

Function pointers

w Pointers can also point to functions:
void myFunct(int arg) { ... }
void test1() {
void (*ptr) (int) = myFunct; // function pointer + init.
(xptr) (10); // function call via pointer

= Thus, functions can, e.g., be passed as parameters to other

functions:
void calllt(void (*xf) (int)) {

(xf) (123); // calling the passed function
}

void test2() {
callIt(myFunct); // function as reference parameter
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1.1.4 Strings and Output "

= | ike Java, C++ has a string class (string)
= sometimes also the type char * is used

!

For console output, the objects cout and cerr are used

= Both exist in the name space (packet) std

= for using them without name prefix:
using namespace std; //correspondsto ’import std.*;’in Java

= Example for an output:
double x = 3.14;
cout << "Pi ist approximately " << x << "\n'";

w Special formatting functions for the output of numbers, e.g.:
cout << setw(8) << fixed << setprecision(4) << x << "\n";

w output with a field length of 8 and exacly 4 decimal places

=== Roland Wismduiller :
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1.1.5 Further specifics of C++ n

= Global variables
= are declared outside any function or method
= |ive during the complete program execution
= are accessible by all functions
= Global variables and functions can be used only after the
declaration
= thus, for functions we have function prototypes

int funcB(int n); // function prototype

int funcA() { // function definition
return funcB(10);

+

int funcB(int n) { // function definition
return n * n;

+
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1.1.5 Further specifics of C++ ... [I

= Keyword static used with the declaration of gloabal variables or
functions

static int number;

static void output(char *str) { ... }

= causes the variable/function to be visible only in the local
source file

= Keyword const used with the declaration of variables or

parameters
const double PI = 3.14159265;
void print(const char *str) { ... }

= causes the variables to be read-only
= roughly corresponds to final in Java
= (note: this description is extremely simplified!)

=TT Roland Wismdiller .
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1.1.5 Further specifics of C++ ... n

= Passing command line arguments:
int main(int argc, char **argv) {
if (argc > 1)
cout << "Argument 1: " << argv[1] << "\n";

}

Example invocation: bslably ./myprog -p arg?2
Argument 1: -p

= argc is the number of arguments (incl. program name)
= argv is an array (of length argc) of strings (char *)

= in the example: argv[0] = "./myprog"
argv[1l] = "-p"
argv[2] = "arg2"

= important: check the index against argc

==T" Roland Wismdiller .
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1.1.6 C/C++ Libraries

d

Overview

= There are several (standard) libraries for C/C++, which always
come with one or more header files, e.g.:

Header Library L :

_ _ Description contains, e.g.

file (g++ option)

jostream input/output cout, cerr

string C++ strings string

stdlib.h standard funct. | exit()

sys/time.h time functions | gettimeofday()
math.h -Im math functions | sin(), cos(), fabs()
pthread.h |-pthread threads pthread_create()
mpi.h -lmpich MPI MP1_Init()

=TT Roland Wismdiller .
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Parallel Processing (2/15)

1.1.7 The C Preprocessor

46

Functions of the preproce

SSOr.

= Embedding of header file

#include <stdio.h>
#include "myhdr.h"

= Macro expansion

#define BUFSIZE 100
#define VERYBAD i +

// searches only in system directories
// also searches in current directory

/I Constant
1; /| Extremely bad style !!

#define GOOD (BUFSIZE+1) // Parenthesis are important!

BUFSIZE;
2+ VERYBAD
2xGOO0D;

int 1
int
int

o M
nm

/l becomes int 1 100;
// becomes int a = 2%i + 1;
// becomes int a = 2*(100+1);

=7" Roland Wismliller
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1.1.7 The C Preprocessor ... "

Functions of the preprocessor: ...

= Conditional compliation (e.g., for debugging output)

int main() {
#ifdef DEBUG

cout << "Program has started\n";
#endif

+

= output statement normally will not be compiled

= {0 activate it:
= either #define DEBUG at the beginning of the program
= or compile with g++ -DDEBUG ...
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1.2 Threads and Synchronization n
Threads

w Activities within processes, concurrent to others

w Private resources:
= CPU registers, including PC and stack pointer
w |ocal variables

= All other resources (esp. memory) are shared

= Threads are time-multiplexed to available CPU cores by the OS

==T" Roland Wismdiller .
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1.2 Threads and Synchronization ... ‘I

Synchronization

= Ensuring conditions on the possible sequences of events in
threads
= mutual exclusion
= temporal order of actions in different threads

= Tools:
= shared variables
= semaphores / mutexes
= monitors / condition variables

= barriers
£ ::.:.'..'j: Egtlﬁggsvsv)i/%@%lee " verteilte Systeme Parallel Processing (2/15) 20
1.2 Threads and Synchronization ... n

Synchronization using shared variables
= Example: waiting for a result

Thread 1

// compute and
// store result
ready = true;

Thread 2

while (!'ready); // wait
// read / process the result

= Extension: atomic read-modify-write operations of the CPU
- e.g., test-and-set, fetch-and-add

= Potential drawback: busy waiting

= but: in high performance computing we often have exactly one
thread per CPU = performance advantage, since no system
call

==T" Roland Wismdiller .
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1.2 Threads and Synchronization ...

Semaphores
= Components: counter, queue of blocked threads

= Atomic operations:
w P() (also acquire, wait Or down)
= decrements the counter by 1
= jf counter < 0: block the thread
w V() (also release, signal Of up)
= jncrements counter by 1
= if counter < 0: wake up one blocked thread

= Binary semaphore
= can only assume the positive values 0 and 1
w ysually for mutual exclusion

=== Roland Wismduiller .
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1.2 Threads and Synchronization ...

52

Monitors

= Module with data, procedures and initialization code

= access to data only via the monitor procedures
= (roughly corresponds to a class)

= All procedures are under mutual exclusion

= Further synchronization via condition variables
= two operations:

= wait(): blocks the calling thread
= signal(): wakes up some blocked threads

- variants: wake up only one thread / wake up all thread
= N0 “memory”: signal () only wakes a thread, if it already has

called wait () before

==T" Roland Wismdiller .
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1.2 Threads and Synchronization ... ‘I

Barrier
= Synchronization of groups of processes or threads, respectively

w Semantics:

w thread which reaches the barrier is blocked,
until all other threads have reached the barrier, too

Call of barrier operation Operation returns
Thread A \- v
Thread B % '% ?/
Thread C —————————— = - -
Thread is blocke Time—=

w Used to structure concurrent applications into synchronous
phases

=== Roland Wismduiller :
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1.2 Threads and Synchronization ... n

Synchronization errors

= |nsufficient synchronization: race conditions

= result of the calculation is different (or wrong), depending on
temporal interleaving of the threads

= important: do not assume FIFO semantics of the queues in
synchronization constructs!
= Deadlocks
= a group of threads waits for conditions, which can only be
fulfilled by the other threads in this group
w Starvation (unfairness)

= a thread waiting for a condition can never execute, although
the condition is fulfilled regularly

==T" Roland Wismdiller .
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1.2 Threads and Synchronization ... ‘I

Example for race conditions

= Task: synchronize two threads, such that they print something
alternatingly
= \Nrong solution with semaphores:

Semaphore s1 = 1;
Semaphore s2 = 0;

Thread 1 Thread 2
while (true) { while (true) {
P(sl); P(s2);
print("1"); P(sl1);
V(s2); print("2");
V(sl); V(sl);
} }
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1.3 C++ Threads "

= Part of the C++ language standard since 2011 (C++-11)
= implemented by the compiler and the C++ libraries
= independent of operating system

= Programming model:
= at program start: exactly one (master) thread

w master thread creates other threads
and should wait for them to finish

= process terminates when master thread terminates
= when other threads are still running, an error is raised

==T" Roland Wismdiller .
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1.3 C++ Threads ... "

Creating threads

w Class std::thread
= represents a running thread

= Creation of a new thread (both C++-object and OS thread):
std: :thread myThread( function, args ...);

= with this declaration, the C++ object (and the OS thread) is
automatically destroyed when the current scope is left

= function: the function that should be executed by the thread

= args ....any number of parameters, which will be passed to
function

w function cannot have a return value
= use result parameters instead
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1.3 C++ Threads ... "

Methods of class thread (incomplete)
= void join()
= waits until the thread execution has completed
= after this method returns, the thread can be destroyed safely

w void detach()
= detach the OS thread from the C++ thread object

= the OS thread will continue its execution, even when the
thread object is destroyed

= the thread cannot be joined any more

==T" Roland Wismdiller .
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1.3 C++ Threads ... "

Example: Hello world (= 01/helloThread.cpp)

#include <iostream>
#include <thread>

void sayHello()
{

std::cout << "Hello World!\n";
+

int main(int argc, char **argv)
{
std: :thread t(sayHello);
t.join();
return O;

=== Roland Wismduiller :
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1.3 C++ Threads ... "

Example: Summation of an array with multiple threads

#include <iostream> (== 01/sum. cpp)

#include <thread>

#tdefine N 5
#define M 1000

/% This function is called by each thread x*/
void sumRow(int *row, long *res)

{

int 1i;
long sum = O;

for (i=0; i<M; i++)
sum += rowl[i];

*res = sum; /% return the sum. */

=== Roland Wismduiller :
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1.3 C++ Threads ... n

/* Initialize the array */
void initArray(int array[N] [M])
{

}

/% Main program =/
int main(int argc, char **argv)
{

int array[N] [M];

int 1i;

std: :thread threads|[N];

long res[N];

long sum = O;

initArray(array); /= initialize the array */

= Roland Wismuiller i
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1.3 C++ Threads ... "

/% Create a thread for each row and pass the pointer to the row and the
pointer to the result variable as an argument */
for (i=0; i<N; i++) {
threads[i] = std::thread(sumRow, arrayl[i], &res[i]);
+

/x Wait for the threads’ termination and sum the partial results */
for (i=0; i<N; i++) {

threads[i].join();

sum += res[i];

+

std::cout << "Sum: " << sum << "\n";

Compile and link the program

= g++ -0 sum sum.cpp —pthread

=== Roland Wismduiller :
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Notes for slide 63:

In C++, the statement
threads[i] = std::thread(...);

actually means:
1. create a new (temporary) object of class std: : thread by calling the proper con-
structor,
2. copy the object into the array,
3. delete the temporary object from step 1.
For threads, this sequence works due to the special implementation of the std: :thread

class, that overrides the assignment operator in such a way, that the OS thread is not
copied and/or destroyed along with the C++ object.

A consequence of this assignment is that if the array threads is destroyed (because
execution leaves the block where it has been declared), the threads are also destroyed.
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1.3 C++ Threads ... "

Remarks on the example

= \When creating the thread, any number of parameters can be
passed to the thread function

= Since the thread function has no return value, we pass the
address of a result variable (&res[i]) as a parameter
w the thread function will store its result there
= caution: since res is a local variable, the threads must be
joined before the method exits
= No synchronization (other than join()) is required
w each thread stores to a different element of res

= With join(), we can only wait for a specific thread
w nefficient, when the threads have different execution times
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1.3 C++ Threads ... "

Synchronization: mutex variables

= Behavior similar to a binary semaphore
w states: locked, unlocked; initial state: unlocked
= Declaration (and initialization):
std: :mutex mutex;
= To lock the mutex, create an object of class std: :unique_lock:
w std::unique_lock<std::mutex> lock(mutex);
= the mutex is automatically unlocked when lock is destroyed,
i.e., when execution leaves the current block
w Class mutex does not allow recursive locking
= j.e., the same thread cannot lock the mutex twice
= use class recursive_mutex for this purpose

==T" Roland Wismdiller .
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Notes for slide 65:

Please see the C++ reference for more information about the mutex and lock classes,
e.g. http://www.cplusplus.com/reference/mutex/.

There are, for instance, also classes timed_mutex and recursive_timed_mutex which
enable to have a timeout when trying to lock the mutex.

65-1

1.3 C++ Threads ... "

Synchronization: condition variables

w Declaration (and initialization):
std::condition_variable cond;

= |mportant methods:
w wait: void wait(unique_lock<mutex>& lock)
= thread is blocked, the mutex wrapped by lock will be
unlocked temporarily
= signaling thread keeps the mutex, i.e., the signaled
condition may no longer hold when wait () returns!
= typical use: while (!condition_met)
cond.wait (lock);
= signal just one thread: void notify_one()

= signal all threads: void notify_all()

=7" Roland Wismliller .
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http://www.cplusplus.com/reference/mutex/

Notes for slide 66:

The syntax unique_lock<mutex>& lock indicates that the argument of the method
wait () is passed by reference rather than by value.

66-1

1.3 C++ Threads ... n

Example: simulating a monitor with C++ threads

#include <thread> (= 01/monitor.cpp)

#include <mutex> /I Defines std::mutex
#include <condition_variable> // Defines std::condition_variable

std: :mutex mutex;
std::condition_variable cond;
volatile int ready = O;
volatile int result;

void storeResult(int arg) {
std::unique_lock<std::mutex> lock(mutex);
result = arg; /« store result x/
ready = 1;
cond.notify_all();
// The ’lock’ object is destroyed when the method ends, thus unlocking the mutex!

=T Roland Wismdiller :
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Notes for slide 67:

The keyword volatile at the beginning of the declarations of global variables indicates
the compiler must actually perform any read and write operation programmed in the
source code (in the give order), i.e., the compiler must not apply any optimizations to
this variable (especially “caching” the value in a register). This is necessary here, as
the variables can be modified at any time by another thread.

Note that volatile does not imply sequential consistency, since it only imposes a
restriction on the compiler, not on the CPU.

67-1

1.3 C++ Threads ... "

Example: simulating a monitor with C++ threads ...

int readResult ()

{
std::unique_lock<std::mutex> lock(mutex);
while (ready != 1)
cond.wait (lock) ;
return result; // mutex unlocked automatically when ’lock’ is destroyed.
ks

= while is important, since the waiting thread unlocks the mutex

= another thread could destroy the condition again before the
waiting thread regains the mutex
(although this cannot happen in this concrete example!)
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Notes for slide 68:

Note that the C++ standard allows wait () to return even in cases where the condition
has not been signalled. Thus, you always must use a while loop!

68-1

Parallel Processing
Winter Term 2024/25

2 Basics of Parallel Processing
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2 Basics of Parallel Processing ... ‘I

Contents

= Motivation

Parallelism

Parallelism and data dependences
Parallel computer architectures

Parallel programming models
Organisation forms for parallel programs
Performance considerations

= A design process for parallel programs

F 5151113

Literature

= Ungerer
= Grama, Gupta, Karypis, Kumar
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2.1 Motivation n

What is parallelism?

= |n general:
= executing more than one action at a time

= Specifically with respect to execution of programs:
= at some point in time

= more than one statement is executed
and / or
= more than one pair of operands is processed

= Goal: faster solution of the task to be processed

= Problems: subdivision of the task, coordination overhead
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2.1 Motivation ... ‘I

Why parallel processing?

= Applications with high computing demands, esp. simulations
= climate, earthquakes, superconductivity, molecular design, ...

= Example: protein folding

3D structure, function of proteins (Alzheimer, BSE, ...)
1,5 - 10! floating point operations (Flop) / time step
time step: 5. 10~ 155

to simulate: 10— 3s

3 - 1022 Flop / simulation

= — 1 year computation time on a PFlop/s computer!

F F 5 8

w For comparison: world’s currently fastest computer: Frontier
(ORNL, USA), 1206 PFlop/s (with 8699904 CPU cores!)

=TT Roland Wismdiller .
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2.1 Motivation ... d

Why parallel processing? ...

= Moore’s Law: the computing power of a processor doubles every
18 months
= put: memory speed increases much slower
w 2040 the latest: physical limit will be reached

w Thus:
= high performance computers are based on parallel processing
= even standard CPUs use parallel processing internally
= super scalar processors, pipelining, multicore, ...

= Economic advantages of parallel computers
= cheap standard CPUs instead of specifically developed ones

==T" Roland Wismdiller .
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Notes for slide 73:
An estimation of the end of “Moore’s Law”:

Feature size development
(Intel, 1970 - 2014)

(c) of the image: Frank Klemm in der Wikipedia auf Deutsch

139 1380 1980 2000

Year

?If)1iameter of an atom!) 2030 2040 2050
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2.1 Motivation ... d

Architecture trend of high performance computers
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2.2 Parallelism [I

What is a parallel programm?

= A parallel program can be viewed as a partially ordered set of
instructions (activities)

= the order is given by the dependences between the
instructions

= |ndependent instructions can be executed in parallel

> @ »:/' > @ > > @ >
\ Instruction

\ Dependence (sequential order)
[

, , Dependence (synchronisation)
parallel instruction sequence

=== Roland Wismduiller :
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2.2 Parallelism ... n

Concurrency vs. pipelining

= Concurrency (Nebenlaufigkeit): instructions are executed
simultaneously in different exceution units

= Pipelining: execution of instructions is subdivided into sequential
phases.
Different phases of different instruction instances are executed
simultaneously.

= Remark: here, the term “instruction” means a generic compute
activity, depending on the layer of abstraction we are considering

= e.g., machine instruction, execution of a sub-program
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2.2 Parallelism ... d

Concurrency vs. pipelining ...

Sequential
Execution

Concurrent A C
Execution B D

Pipelining Al |[B1 ||C1 | D1
(2 Stages) A2 || B2 |[c2 | D2
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2.2 Parallelism ... n

At which layers of programming can we use parallelism?
= There is no consistent classification
= E.g., layers in the book from Waldschmidt, Parallelrechner:
Architekturen - Systeme - Werkzeuge, Teubner, 1995:
= application programs
= cooperating processes
= data structures
= statements and loops
= machine instruction

“They are heterogeneous, subdivided according to different
characteristics, and partially overlap.”
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2.2 Parallelism ... d

View of the application developer (design phase):

= “Natural parallelism”

= e.g., computing the forces for all stars of a galaxy
= often too fine-grained

= Data parallelism (domain decomposition, Gebietsaufteilung)
= e.g., sequential processing of all stars in a space region

w Task parallelism
= e.g., pre-processing, computation, post-processing,

visualisation
= ::.:.'..'j: Egtlﬁggsvsv)ili?é%lee " verteilte Systeme Parallel Processing (3/15) 79
2.2 Parallelism ... n

View of the programmer:

= Explicit parallelism
= exchange of data (communication / synchronisation) must be
explicitly programmed
= |Implicit parallelism
= by the compiler
= directive controlled or automatic
= |oop level / statement level
= compiler generates code for communication
= within a CPU (that appears to be sequential from the outside)
= super scalar processor, pipelining, ...

==T" Roland Wismdiller .
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2.2 Parallelism ... d

View of the system (computer / operating system):

= Program level (job level)
= independent programs

= Process level (task level)
= cooperating processes
= mostly with explicit exchange of messages

= Block level
= |ight weight processes (threads)
= communication via shared memory
= often created by the compiler
= parallelisation of loops

=TT Roland Wismdiller :
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2.2 Parallelism ... n

View of the system (computer / operating system): ...

w |nstruction level

= elementary instructions (operations that cannot be further
subdivided in the programming language)

= scheduling is done automatically by the compiler and/or by the
hardware at runtime

= e.9.,in VLIW (EPIC, e.g. ltanium) and super scalar processors

= Sub-operation level

= compiler or hardware subdivide elementary instructions into
sub-operations that are executed in parallel

= e.g., with vector or array operations

==T" Roland Wismdiller .
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2.2 Parallelism ... d

Granularity
= Defined by the ratio between computation and communication
(including synchronisation)

= intuitively, this corresponds to the length of the parallel
instruction sequences in the partial order

= determines the requirements for the parallel computer
= especially its communication system
= influences the achievable acceleration (speedup)

‘

Coarse-grained: program and process level
= Mid-grained: block level

= Fine-grained: instruction level

=== Roland Wismduiller :
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2.3 Parallelisation and Data Dependences n

(Animated slide)
= |mportant question: when can two instructions S; and S; be
executed in parallel?

= Answer: if there are no dependences between them
= Assumption: instruction S; can and should be executed before
instruction S5 according to the sequential code

= eg.: Si: x=Db + 2 % a;
y = a * (c - 5);
Sy: z = abs(x - y);
= but also in different iterations of a loop

= True / flow dependence (echte Abhangigkeit) S, it) So
a[0] + b[1];

\Bt S1 (i=1) writes to a[1], which
S,: a[2] = a[l] + b[2]; is later read by S2 (i=2)

==*= Roland Wismdller .
=2T= Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 84



2.3 Parallelisation and Data Dependences ... "

(Animated slide)

= Anti dependence (Antiabhangigkeit) S, LN So

Sq: 1] = 2]; - '
1+ al ]A/a[ ] S1 (i=1) read the value of a[2], which

da . _ -
S, a[2] = a[3]; is overwritten by S2 (i=2)

= Output dependence (Ausgabeabhangigkeit) S, LN So

Sq: = 1]; . | |
! ;50 alil S1 (i=1) writes a value to s, which

= Anti and Output dependences can always be removed by
consistent renaming of variables
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2.3 Parallelisation and Data Dependences ... n

(Animated slide)

Data dependences and synchronisation

= Two instructions S; and S5 with a data dependence S; — S
can be distributed by different threads only if a correct
synchronisation is performed

= S5 must be executed after S,
= e.g., by using signal/wait Oor a message
= in the previous example:

Thread 1 Thread 2
x=b + 2 * a;

y =a * (c-5);
wait (cond) ; ‘(//. signal (cond) ;

z = abs(x-y);

==T" Roland Wismdiller .
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2.4 Parallel Computer Architectures n

Classification of computer architectures according to Flynn

w Criteria for differentiation:

= how many instruction streams does the computer process at
a given point in time (single, multiple)?

= how many data streams does the computer process at a

given point in time (single, multiple)?
= Thie leads to four possible classes:

w S|SD: Single Instruction stream, Single Data stream
= single processor (core) systems

= MIMD: Multiple Instruction streams, Multiple Data streams
= all kinds of multiprocessor systems

= SIMD: vector computers, vector extensions, GPUs

w MISD: empty, not really sensible

==T" Roland Wismdiller .
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2.4 Parallel Computer Architectures ... [I

Classes of MIMD computers

= Considering two criteria:
= physically global vs. distributed memory
w shared vs. distributed address space

= NORMA: No Remote Memory Access
= distributed memory, distributed address space
= |.e., N0 access to memory modules of non-local nodes
= communication is only possible via messages
= typical representative of this class:
= distributed memory systems (DMM)

- also called MPP (massively parallel processor)

= in principle also any computer networks (cluster, grid,
cloud, ...)

=== Roland Wismduiller :
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2.4 Parallel Computer Architectures ... n

Classes of MIMD computers ...

= UMA: Uniform Memory Access
= global memory, shared address space
= all processors access the memory in the same way
= access time is equal for all processors
= typical representative of this class:
symmetrical multiprocessor (SMP), early multicore-CPUs

= NUMA: Nonuniform Memory Access
= distributed memory, shared address space
= access to local memory is faster than access to remote one
= typical representative of this class:

distributed shared memory (DSM) systems, modern
multicore-CPUs

==T" Roland Wismdiller .
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2.4 Parallel Computer Architectures ... [I

Global Memory Physically Distributed Memory
&
oMo}
) Ipterconnect (Bus) LocCal Local
S »n
Falt?, | | Memory Memory
no - - -
O
< Shared Memory Interconnectier-Néetwork
SMP: Symmetrical Multiprocessor DSM: Distributed Shared Memory
.
O
28
=10p) LocCal Local
-f:j @ Empty Memory Memory
B2 —X
05 send receive
< Interconrneetion-Netwbrk
DMM: Distributed Memory
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2.4.1 MIMD: Message Passing Systems n

Multiprocessor systems with distributed memory

v v v v

Local Network Local Network
CPUJ IMemory| |Interface| \CPUJ [Memory| |Interface

Cache<—1 I Cache<—1

Node Node

< Interconnection Network >

= NORMA: No Remote Memory Access

= (Good scalability (up to several 100000 nodes)

= Communication and synchronisation via message passing

Roland Wismdiller
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2.4.1 MIMD: Message Passing Systems ... [I

Historical evolution

= |n former times: proprietary hardware for nodes and network
= distinct node architecture (processor, network adapter, ...)
= often static interconnection networks with store and forward
w often distinct (mini) operating systems

= Today:

= cluster with standard components (PC server)

= usually with SMP (sometimes vector computers) as nodes
= nodes often use accelerators (GPUs)

w switched high performance interconnection networks
= 100Gbit/s Ethernet, Infiniband, ...
w standard operating systems (UNIX or Linux derivates)
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2.4.1 MIMD: Message Passing Systems ... n
Properties

= No shared memory or address areas between nodes

= Communication via exchange of messages
= application layer: libraries like e.g., MPI
= gsystem layer: proprietary protocols or TCP/IP
= |atency caused by software often much larger than hardware
latency (~ 1 — 50us vs. ~ 20 — 100ns)
= |n principle unlimited scalability
= e.g. Frontier: 135936 nodes, (8699904 cores)
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2.4.1 MIMD: Message Passing Systems ... [I

Properties ...

= |ndependent operating system on each node
= Often with shared file system

= e.g., parallel file system, connected to each node via a
(distinct) interconnection network

w or simply NFS (in small clusters)
w Usually no single system image

= user/administrator “sees” several computers
w Often no direct, interactive access to all nodes

w batch queueing systems assign nodes (only) on request to
parallel programs

= often exclusively: space sharing, partitioning
w often small fixed partition for login and interactiv use

=TT Roland Wismdiller .
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2.4.2 MIMD: Shared Memory Systems n

Symmetrical multiprocessors (SMP)

= Global address space

w UMA: uniform memory
( CPU) ( CPU) ( CPU) access
w Communication and

Cache] |Cachel |Cache Synchronisation via

$ shared memory
Interconnect (Bus) = only feasible with very few
processors (ca. 2 - 32)
Me¢ymo

Glotbal Shared ry
y

Memory Memor
Module Module
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2.4.2 MIMD: Shared Memory Systems ... [I

Multiprocessor systems with distributed shared memory (DSM)

Local Local
CPU ) |Memory CPUJ  |Memory

Cache4—I Cache<—I

< Interconnection Network >

w Distributed memory, accessible by all CPUs

Node
Node

= NUMA: non uniform memory access

= Combines shared memory and scalability
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2.4.2 MIMD: Shared Memory Systems ... n
Properties

= All Processors can access all resources in the same way

w put; different access times in NUMA architectures
w distribute the data such that most accesses are local

= Only one instance of the operating systems for the whole
computer
= distributes processes/thread amongst the available processors
= all processors can execute operating system services in an
equal way
w Single system image
w for user/administrator virtually no difference to a uniprocessor
system

w Egpecially SMPs (UMA) only have limited scalability

==T" Roland Wismdiller .
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2.4.2 MIMD: Shared Memory Systems ... ‘I

Caches in shared memory systems

w Cache: fast intermediate storage, close to the CPU

= stores copies of the most recently used data from main
memory

= when the data is in the cache: no access to main memory is
necessary

= access is 10-1000 times faster

w Cache are essential in multiprocessor systems

= otherwise memory and interconnection network quickly
become a bottleneck

= exploiting the property of locality
= each process mostly works on “its own” data

w But: the existance of multiple copies of data cean lead to
inconsistencies: cache coherence problem (= BS-1)

=== Roland Wismduiller .
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2.4.2 MIMD: Shared Memory Systems ... n

(Animated slide)

Cache Coherence Problem: Example
= Assumption: write access directly updates main memory

= Three processors access the same memory location
and get different results!

Memory
2fread 100 2fread 100 1 fgread 100
Cache Cache Cache 100: 2
100 2 100 2 100 1
‘ - | read 100 ‘ - ‘
Memory Bus
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2.4.2 MIMD: Shared Memory Systems ... [I

Enforcing cache coherency

= During a write access, all affected caches (= caches with copies)
must be notified
= caches invalidate or update the affected entry

= |n UMA systems

= pus as interconnection network: every access to main memory
is visible for everybody (broadcast)

= caches “listen in” on the bus (bus snooping)
= (relatively) simple cache coherence protocols
= e.9., MESI protocol
w put: bad scalability, since the bus is a shared central resource

=== Roland Wismduiller .
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2.4.2 MIMD: Shared Memory Systems ... n

Enforcing cache coherency ...

= |n NUMA systems (ccNUMA: cache coherent NUMA)

= accesses to main memory normally are not visible to other
processors

= affected caches must be notified explicitly

= requires a list of all affected caches (broadcasting to all
processors is too expensive)

= message transfer time leads to additional consistency
problems

= cache coherence protocols (directory protocols) become very
complex

= put: good scalability

==T" Roland Wismdiller .
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2.4.2 MIMD: Shared Memory Systems ... [I

Memory consistency (Speicherkonsistenz)

= (Cache coherence only defines the behavior with respect to one
memory location at a time

= which values can a read operation return?

= Remaining question:

= when does a processor see the value, which was written by
another processor?

= more exact: in which order does a processor see the write
operations on different memory locations?

===" Roland Wismdiller
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2.4.2 MIMD: Shared Memory Systems ... n
Memory consistency: a simple example

Thread T} Thread T5
A = 0; B = 0;
A =1; B=1;
print B; print A;

= |ntuitive expectation: the output "0 0" can never occur

w But: with many SMPs/DSMs the output "0 0" is possible
= (CPUs with dynamic instruction scheduling or write buffers)

= |n spite of cache coherency: intuitively inconsistent view on the

main memory:
T5: A=1, B=0

T,: A=0, B=1

=7" Roland Wismliller
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2.4.2 MIMD: Shared Memory Systems ... ‘I

Definition: sequential consistency

Sequential consistency is given, when the result of each execution of
a parallel program can also be produced by the following abstract
machine:

Processors execute
P1 P2 SR Pn memory operations
in program order

The switch will be randomly switched
after each memory access

Main Memory

=== Roland Wismduiller .
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2.4.2 MIMD: Shared Memory Systems ... n

Interleavings (Verzahnungen) in the example

Some possible execution sequences No sequential
using the abstract machine: consistency:
B=0 | B=0 . B=0
A=1 . A=1 : B=1
B = . print B : print A
print B ; B= L A=
printA ! printA ! printB
B=1 A=1 1 B=0 A=1 . B=1 A=0 B=0 A=0

==T" Roland Wismdiller .
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2.4.2 MIMD: Shared Memory Systems ... "

Weak consistency models

= The requirement of sequential consistency leads to strong
restrictions for the computer architecture
= CPUs can not use instruction scheduling and write buffers
= NUMA systems can not be realized efficiently

w Thus: parallel computers with shared memory (UMA and NUMA)
use weak consistency models!
= allows, e.g., swapping of write operations
= however, each processor always sees its own write

operations in program order

= Remark: also optimizing compilers can lead to weak consistency
w swapping of instructions, register allocation, ...
= declare the affected variables as atomic / volatile!

=== Roland Wismduiller :
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2.4.2 MIMD: Shared Memory Systems ... n

Consequences of weak consistency: examples

w all variables are initially 0

Possible results with "unexpected" behavior with
sequential consistency _l weak consistency:

A=1; B=1; 0,1 [due to swapping of the
print B; | print A; H) read and write accesses
A=1; while (!valid);| 1 |due to swapping of the write
valid=1l; | print A; accesses to A and valid

==T" Roland Wismdiller .
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2.4.2 MIMD: Shared Memory Systems ... "

Weak consistency models ...

= Memory consistency can (and must!) be enforced as needed,
using special instrcutions
w fence /| memory barrier (Speicherbarriere)

= all previous memory operations are completed; subsequent
memory operations are started only after the barrier
= acquire and release
= acquire: subsequent memory operations are started only
after the acquire is finished
= release: all previous memory operations are completed
= pattern of use is equal to mutex locks

=== Roland Wismduiller .
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2.4.2 MIMD: Shared Memory Systems ... n

Enforcing consistency in the examples

= Here shown with memory barriers:

A=]1; B=1;
fence; fence;
print B;| print A;

Fence ensures that the write access
is finished before reading

A=1; while (!valid); | Fence ensuresthat'A’is valid
fence; fence; before 'valid’ is set
valid=1;| print A; and that A is read only after

'valid’ has been set

==T" Roland Wismdiller .
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Notes for slide 109:

In C++, there are special atomic types that allow to realize sequential consistency
where needed. In C++, the last example would be (using acquire/release):

w |nitialization:
int A = 0;
std::atomic<int> wvalid = 0;

w (Code of Thread 1:
A=1;
valid.store(l, std::memory_order_release);

w Code of Thread 2:
while (!valid.load(std::memory_order_acquire));
std::cout << A << std::endl;

See, e.g., https://en.cppreference.com/w/cpp/atomic/memory_order for a de-
tailed discussion.

109-1

24.3 SIMD d

= Only a single instruction stream, however, the instrcutions have
vectors as operands =- data parallelism

= Vector = one-dimensional array of numbers

w Variants:
w vector computers

= pipelined arithmetic units (vector units) for the processing of
vectors

= SIMD extensions in processors (SSE, AVX)
= Intel: 128 Bit registers with, e.g., four 32 Bit f1oat values
= graphics processors (GPUSs)

= multiple streaming multiprocessors

= streaming multiprocessor contains several arithmetic units
(CUDA cores), which all execute the same instruction

=7" Roland Wismliller .
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https://en.cppreference.com/w/cpp/atomic/memory_order

2.4.3 SIMD .. d

(Animated slide)

Example: addition of two vectors

w A; =B; +Cj,forallyj=1,...,.N

= \ector computer: the elements of the vectors are added in a
pipeline: sequentially, but overlapping

= if a scalar addition takes four clock cycles (i.e., 4 pipeline
stages), the following sequence will result:

1123 N Stage 1
1123 N Stage 2
—b--bL--l--} B+C {--1--
o 1123 N Stage 3
% 1123 N| Stage 4
_ » Time
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24.3 SIMD ... d

(Animated slide)

Example: addition of two vectors
- A; = B; 4+ Cj, forally =1,...,IN

w SSE and GPU: several elements of the vectors are added
concurrently (in parallel)

= if, e.g., four additions can be done at the same time, the
following sequence will result:

1 5 N-3 Arithmetic Unit 1
Arith ' it 2
______ 2 28 gic ... l.Nz2_| Arthmetic Uni
3 7 N—1 Arithmetic Unit 3
4 Eemes N Arithmetic Unit 4
» Time

=" Roland Wismdiller
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24.3 SIMD ... d

(Animated slide)

Architecture of a GPU (NVIDIA Fermi)

. Instruction Cache
o o £ Warp Scheduler | Warp Scheduler
S €y Dispatch Unit Dispatch Unit
p -
O : :
Q % o Register File
£ |og
= Core | Core BT
8 | PS5 b SFU
T = FP INT Core | Core [T/t
[D/ST
E Core | Core [—LoRr
C Core Core [D/ST
% N\ Core | Core (TR SFU
E. \\ Core | Core 353
= —\ Core | Core 3@
N 0T SFU
> N\ Core Core [—[DST
g & Interconnect Network
[}
s N Shared Memory / L1 Cache
Uniform Cache
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Notes for slide 113:
The current NVIDIA Ampere Architecture is similar, with some differences:
= it has a total of 8192 cores

= in addition to int32 and fp32 cores, each SM also has 8 fp64 cores and one tensor
core.
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24.3 SIMD ... d

Programming of GPUs (NVIDIA Fermi)

-

-

-

Partitioning of the code in groups (warps) of 32 threads
Warps are distributed to the streaming multiprocessors (SEs)
Each of the two warp schedulers of an SE executes one

instruction with 16 threads per clock cycle

= in a SIMD manner, i.e., the cores all execute the same
instruction (on different data) or none at all

= e.g., with if-then-else:
= first some cores execute the then branch,
= then the other cores execute the else branch

Threads of one warp should address subsequent memory
locations

= only in this case, memory accesses can be merged
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2.4.4 High Performance Supercomputers "
Trends

500

400

300

200

100

1993 1
1995
2000
2005

B sivD

[] Uniprocessor
1 smp

] sMP Cluster
[ (PC) Cluster
[] MPP and DSM

Source:
S » Topb500 List
S 2 www.top500.0rg
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2.4.4 High Performance Supercomputers ...

d

Typical architecture:

= Message passing computers with SMP nodes and accelerators

(e.g. GPUs)

= at the highest layer: systems with distributed memory
= nodes: NUMA systems with partially shared cache hierarchy
= in addition one or more accelerators per node

= Compromise between scalability, programmability and

performance

= Programming with hybrid programming model
= message passing between the nodes (manually, MPI)
= shared memory on the nodes (compiler supported, e.g.,

OpenMP)

= if need be, additional programming model for accelerators

=TT Roland Wismdiller .
=F4w> Betriebssysteme / verteilte Systeme

Parallel Processing (4/15)

2.4.4 High Performance Supercomputers ...

116

d

Typical architecture: ...

CPU CPU GPU
Core || Core Core || Core
Cache||Cache Cache||Cache
Core || Core Core || Core
Cache||Cache Cache||Cache Graphics
Cache Cache Memory
[ [ [
Interconnection Network
[ [ [
Main Main Network
Memory Memory Interface
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Lunch with the ET-I Profs |]

= \Wednesday, Oct. 23rd
12:00 - 13:00
LEO Paul-Bonatz Campus
= Explicit offer for asking questions to ETI professors, e.qg.:
= can | write my Thesis abroad?
= what kind of industry collaborations do you have?
= hat sort of Erasmus partnerships do you have?
-
-

which lectures would you recommend me to take?
?
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2.5 Parallel Programming Models "

In the followig, we discuss:

= Shared memory
= Message passing
= Distributed objects

w Data parallel languages

= The list is not complete (e.g., data flow models, PGAS)

=== Roland Wismduiller .
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Notes for slide 118:

= |n the data flow model, a program is specified as a data flow graph (c.f. 2.7.7),
where a node can be computed (‘fired’) as soon as all its input data is available.
The edges in the data flow actually are the true dependences of the program.

= PGAS = Partitioned Global Address Space. PGAS languages offer a shared
memory programming model on a distributed memory computer. In a PGAS lan-
guage, pointers (or references) can point to data on a remote node. When the
pointer is dereferenced, the compiler automatically generates the required mes-
sage exchange for fetching or storing the data.
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2.5.1 Shared Memory ‘I

= | ight weight processes (threads) share a common virtual address
space

= The “more simple” parallel programming model
w all threads have access to all data
= also good theoretical foundation (PRAM model)

= Mostly with shared memory computers

= however also implementable on distributed memory computers
(with large performance panalty)

= shared virtual memory (SVM)

= Examples:
= PThreads, Java Threads, C++ Threads
= |ntel Threading Building Blocks (TBB)
= OpenMP (= 3.1)

=== Roland Wismduiller :
—+= Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 119

2.5.1 Shared Memory ... n

Example for data exchange

Producer Thread Consumer Thread

for (i=0; i<size; i++) while (flag==0);
buffer[i] = produce(); for (i=0; i<flag; i++)

flag = size; consume (buffer[i]);

Execution Sequence:

Write into shared buffer flag ==
flag = 10 flag == 0
flag 1= 0

Read data from buffer

==T" Roland Wismdiller .
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2.5.2 Message Passing ‘I

‘

Processes with separate address spaces

‘

Library routines for sending and receiving messages
= (informal) standard for parallel programming:
MPI (Message Passing Interface, w= 4.2)
= Mostly with distributed memory computers
= but also well usable with shared memory computers

= The “more complicated” parallel programming model
= explicit data distribution / explicit data transfer
= typically no compiler and/or language support
= parallelisation is done completely manually

=TT Roland Wismdiller .
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2.5.2 Message Passing ... n

Example for data exchange

Producer Process Consumer Process
send (receiver, receive (&buffer,
&buffer, size); buffer_length);

System call

Check permissions
Prepare DMA

DMA to network interface

System call
Block the process (thread)

:

DMA from network to OS buffer
Interrupt

Copy OS buffer to user buffer
Set process to ready

Process the message

User Process
Operating System (OS)
Hardware

=== Roland Wismduiller :
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2.5.3 Distributed Objects ['

w Basis: (purely) object oriented programming
= access to data only via method calls
= Then: objects can be distributed to different address spaces
(computers)
= at object creation: additional specification of a node
= object reference then also identifies this node

= method calls via RPC mechanism
= e.g9., Remote Method Invocation (RMI) in Java

= more about this: lecture “Distributed Systems”

= Distributed objects alone do not yet enable parallel processing
= additional concepts / extensions are necessary
= e.g., threads, asynchronous RPC, futures

=== Roland Wismduiller .
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Notes for slide 123:

Example

= (Class Scene as description of a scene
= constructor Scene (int param)
= method Image generate() computes the image

= Computation of three images with different parameters (sequentialy):

Scene s1 = new Scene(1);
Scene s2 = new Scene(2);
Scene s3 = new Scene(3);
Image il = sl.generate();
Image i2 = s2.generate();
Image i3 = s3.generate();
show(il, i2, i3);
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Parallel computing with threads

Node 0 Node1 Node2 Node3
s1 =new Scene(1); B 3.1 >
s2 = new Scene(2); : o B 3
s3= newJ]&:ene(C%);\A\B , - S
i1 = s1.generate(); — -
g: 0 i2 = s2.generate(); > o
. . i3 = s3.generate(); >
J]joiu -« : : ,
show(i, i2, i3); i 5 5
Thread 1 Thread 2 Thread 3 : ' :
123-2
Parallel computing with asynchronous RPC
Node 0 Node1 Node2 Node3
s1 = new Scene(1); ——»| S1
s2 = new Scene(2); ; | 82
s3 = new Scene(3); : L |83
r = s1.generate(); > :
Result: / r2 = s2.generate(); >
Request object 3 = s3.generate(); >
i1 = r1.getResult();
Wait for / -
result i2 = r2.getResult(); < : ,
i3 = r3.getResult(); = : .
show(i1, i2, i3): E ! :
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Parallel computing with futures

Node 0 Node1 Node2 Node3
s1 = new Scene(1); ——=| ST
s2 = new Scene(2); L | S2
s3 = new Scene(3); ' |83
| i1 = s1.generate(); >
Iljesult. b — i2 = s2.generate(); - i
uture object i3 = s3.generate(); >
When a future show(i, i2, i3);
is accessed, the / : - ;
thread is blocked ] = I ;
automatically, until ' = ] ! ;
the value is available : : :
123-4
2.5.4 Data Parallel Languages n

!

'

‘

Goal: support for data parallelism

Sequential code is amended with compiler directives

= Specification, how to distribute data structures (typically
arrays) to processors

Compiler automatically generates code for synchronisation or

communication, respectively

= operations are executed on the processor that “possesses” the
result variable (owner computes rule)

Example: HPF (High Performance Fortran)

Despite easy programming not really successful
= only suited for a limited class of applications
= good performance requires a lot of manual optimization

==T" Roland Wismdiller .
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2.5.4 Data Parallel Languages ... ‘I

(Animated slide)

Example for HPF

REAL A(N,N), B(N,N) Distribution with 4 processors:
'HPF$ DISTRIBUTE A (BLOCK, *)

IHPF$ ALIGN B(:,:) WITH A(:,:)

DOI =1, N
DO J =1, N
A(I,J) = A(I,J) + B(J,I) A B
END DO
END DO

= Processor 0 executes computationsforI =1.. N/4

‘

Problem in this example: a lot of communication is required
= B should be distributed in a different way

=TT Roland Wismdiller .
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Notes for slide 125:

For ease of understanding, the example assumes that the matrix is stored in row-major
order (i.e., the layout in main memory is row 0, row 1, ...), as it is used by C and C++.

However, Fortran actually stores arrays in column-major order (i.e., the layout in main
memory is column 0, column 1, ...). This means that actually A should be distributed
with

IHPF$ DISTRIBUTE A(*,BLOCK)
and the I and J loops should be interchanged.
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2.6 Focus of this Lecture ‘I

‘

Explicit parallelism

‘

Process and block level

‘

Coarse and mid grained parallelism
= MIMD computers (with SIMD extensions)
= Programming models:

= shared memory
= message passing

=== Roland Wismduiller :
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2.7 Organisation Forms for Parallel Programs n

= Models / patterns for parallel programs

2.7.1 Embarrassingly Parallel

= The task to be solved can be divided into a set of completely
independent sub-tasks

w All sub-tasks can be solved in parallel

= No data exchange (communication) is necessary between the
parallel threads / processes
= |deal situation!

= when using n processors, the task will (usually) be solved n
times faster

= (for reflection: why only usually?)

==T" Roland Wismdiller .
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2.7.1 Embarrassingly Parallel ... ‘I

lllustration
Input data
Tasks Q:) C% %} G})
Output data
£ ::.:.'..'j: Egtlﬁggsvsv)ili?é%lee " verteilte Systeme Parallel Processing (5/15) 128
2.7.1 Embarrassingly Parallel ... n

Examples for embarrassingly parallel problems

= Computation of animations
w 3D visualizations, animated cartoons, motion pictures, ...
= each image (frame) can be computed independently

w Parameter studies

w multiple / many simulations with different input parameters

= e.g., weather forecast with provision for measurement errors,
computational fluid dynamics for optimizing an airfoil, ...

==T" Roland Wismdiller .
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2.7 Organisation Forms for Parallel Programs ... ‘I

2.7.2 Manager/Worker Model (Master/Slave Model)

= A manager process creates
independent tasks and assigns them
to worker processes Manager

= several managers are possible, / f ‘\ \
too
W1 |W2| [W3| W

= a hierarchy is possible, too: a
worker can itself be the manager Workers
of own workers

= The manager (or sometimes also the workers) can create
additional tasks, while the workers are working

4

= The manager can become a bottleneck

= The manager should be able to receive the results asynchronously
(non blocking)

=== Roland Wismduiller .
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2.7.2 Manager/Worker Model (Master/Slave Model) ... n

Typical application
= Often only a part of a task can be parallelised in an optimal way

= |n the easiest case, the following flow will result:

i

Preprocessing l

(sequentially) Distribute tasks (input)

S
Manager | Workers
i (Slaves)
Postprocessing
(sequentially) l Collect results (output)
..:i' Eg’!ﬁggsvsv)i/g[[g%lg " verteilte Systeme Parallel Processing (5/15) 131



2.7.2 Manager/Worker Model (Master/Slave Model) ... "

Examples
= |mage creation and Worker 11 Wortker 2
rocessin
P — P
= manager partitions the AN F
image into areas; each M, 8
area is processed by one ,
worker Worker 3 Worker 4
=
= Tree search }%
= manager traverses the )
. D
tree up to a predefined =
depth; the workers
process the sub-trees p p
Worker 1 ---  Worker 6
..:7.‘...': E(e)tlﬁggsvsv)l/%g%lg / verteilte Systeme Parallel Processing (5/15) 132
2.7 Organisation Forms for Parallel Programs ... n
2.7.3 Work Pool Model (Task Pool Model)
w Tasks are explicitly specified using a data structure
= input data + task description, if necessary
w Centralized or distributed pool (list) of tasks
- workers (threads or processes) TaSk Pool
fetch tasks from the pool
= usually much more tasks than /

workers
= good load balancing is possible

W4

= accesses must be synchronised

= \Workers can put new tasks into the pool, if need be
= e.g., with divide-and-conquer

=27 Roland Wismdiller .
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2.7 Organisation Forms for Parallel Programs ... ‘I

2.7.4 Divide and Conquer
= Recursive partitioning of the task into independent sub-tasks
w Tasks dynamically create new sub-tasks

w Problem: limiting the number of tasks
= egp. if tasks are directly implemented by threads / processes

w Solutions:
= create a new sub-task only, if its size is larger than some
minimum
= maintain a task pool, which is executed by a fixed number of
threads

=== Roland Wismduiller :
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2.7.4 Divide and Conquer ... n

(Animated slide)

Example: parallel quicksort

Qsort(A1 .. ») Example:

If n = 1: done. Thread 1

Else:
Determine the pivot S.

Reorder A such that
A; < Sfore € [1,k[and
A; > Sforz € [k,n]

Execute Qsort(A1 .. k—_1)
and Qsort(Ag .. ») Thread 11
in parallel.

==T" Roland Wismdiller .
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2.7.4 Divide and Conquer ...

(Animated slide)

Example: parallel quicksort

Qsort(A1 .. )
If n = 1: done.
Else:
Determine the pivot S.

Reorder A such that
A; < Sfore € [1,k[and
A; > Sfori € [k, n].

Execute Qsort(A1 . x_1)
and Qsort(Ag .. »)
in parallel.

Example:

Thread 1

* Assumption: thread executes first call itself
and creates new thread for the second one

=TT Roland Wismdiller .
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2.7.4 Divide and Conquer ...

Parallel Processing (5/15) 1 36

d

(Animated slide)

Example: parallel quicksort

Qsort(A1 .. »)
If n = 1: done.
Else:
Determine the pivot S.

Reorder A such that
A; < Sfore € [1,k[and
A; > Sforz € [k,n]

Execute Qsort(A1 .. x—1)
and Qsort(Ag .. »)
in parallel.

Example:

Thread 1

A[3] A[4] A[5] A[6]

* Additional Assumption: new thread is created
only if array length > 2

==*= Roland Wismdller .
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2.7 Organisation Forms for Parallel Programs ...

d

2.7.5 Data parallel Model: SPMD

= Fixed, constant number of processes (or threads, respectively)

= (One-to-one correspondence between tasks and processes

= All processes execute the same program code
= however: conditional statements are possible ...

= For program parts which cannot be parallelised:
w replicated execution in each process
= execution in only one process; the other ones wait

w Usually loosely synchronous execution:

= alternating phases with independent computations and
communication / synchronisation

===" Roland Wismdiller
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Parallel Processing (5/15)

2.7.5 Data parallel Model: SPMD ...

138

Typical sequence

Synchronisation / communication

-« BuwI|

v Y oY vy v v vy
I T T e A
Synchronisation / communication
I
I T

Synchronisation / Communication

=" Roland Wismdiller
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2.7 Organisation Forms for Parallel Programs ... ‘I

2.7.6 Fork/Join Model

= Program consists of sequential

and parallel phases
Fork

0 ) 0 3

Join

= Thread (or processes, resp.) for
parallel phases are created at
run-time (fork)

w one for each task

O

= At the end of each parallel
phase: synchronisation and
termination of the threads (join)

-« 2uwi|

=== Roland Wismduiller .
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2.7 Organisation Forms for Parallel Programs ... n

2.7.7 Task-Graph Model

= Tasks and their dependences
(data flow) are represented as a

graph
= An edge in the graph denotes a
data flow
= e.g., task 1 produces data, N
task 2 starts execution, when
this data is entirely available @

= Assignment of tasks to processors usually in such a way, that the
necessary amount of communication is as small as possible

= e.g.,tasks 1, 5, and 7 in one process

==*= Roland Wismdller .
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2.7 Organisation Forms for Parallel Programs ... ‘I

2.7.8 Pipeline Model

= A stream of data elements is directed through a ¢
sequence of processes P1
w The execution of a task starts as soon as a i
data element arrives P2

= Pipeline needs not necessarily be linear

= general (acyclic) graphs are possible, as P4
with the task-graph model

= Producer/consumer synchronisation between P5
the processes

=== Roland Wismduiller :
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2.8 Performance Considerations "

= \Which performance gain results from the parallelisation?

= Possible performance metrics:

= execution time, throughput, memory requirements, processor
utilisation, development cost, maintenance cost, ...

= In the following, we consider execution | py po p3 ps

time SRR o
= execution time of a parallel program: |:| ;.—.;@
time between the start of the program =1
and the end of the computation on the S

last processor |
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2.8.1 Performance Metrics n

Speedup (Beschleunigung)

= Reduction of execution time due to parallel execution

= Absolute speedup

S(p) = Tf;)

w T, = execution time of the sequential program (or the best
sequential algorithm, respectively)

= T'(p) = execution time of the parallel program (algorithm) with
P Processors

=== Roland Wismduiller :
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2.8.1 Performance Metrics ... ‘I

Speedup (Beschleunigung) ...
= Relative speedup (for “sugarcoated” results ...)

S(p) = %

= T'(1) = execution time of the parallel program (algorithm) with
one processor

= Optimum: S(p) = p

= Often: with fixed problem size, S(p) declines again, when p
increases

= more communication, less computing work per processor

=== Roland Wismduiller .
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Notes for slide 145:

Sometimes, the relative speedup is computed with respect to the parallel execution
on a small number of processors. This is neccessary, when the problem cannot be

solved sequentially, e.g., due to time or memory constraints. In such cases, the abso-
lute speedup cannot be determined.
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2.8.1 Performance Metrics ... ‘I

Speedup (Beschleunigung) ...

= Typical trends:
A ideal: S(p) =p Algorithm 1

Speedup S

Algorithm 2

=
Number of processors p

= Statements like “speedup of 7.5 with 8 processors” can not be
extrapolated to a larger number of processors

=== Roland Wismduiller .
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 146

2.8.1 Performance Metrics ... n

Amdahl’s Law
= Defines an upper limit for the achievable speedup

= Basis: usually, not all parts of a program can be parallelized
= due to the programming effort
= due to data dependences

= | et a be the portion of time of these program parts in the
sequential version of the program. Then:

T, 1 1
— < —
T(p) ~ a+(1—-a)/p ~ a

= With a 10% sequential portion, this leads to S(p) < 10

=== Roland Wismduiller :
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Notes for slide 147:

If a portion a of the sequential execution time is not parallelizable, then the parallel
execution time in the best case is

T(p)=a-Ts+(1—a>-%
Thus - - X
S = % < 5 —
P = 7@ S anta-a &  at(-a/p
147-1
2.8.1 Performance Metrics ... n

Superlinear speedup

= Sometimes we observe S(p) > p, although this should actually
be impossible

w Causes:
= implicit change in the algorithm
= e.g., with parallel tree search: several paths in the search
tree are traversed simultaneously
- limited breadth-first search instead of depth-first search

w cache effects

= with p processors, the amount of cache is p times higher
that with one processor

= thus, we also have higher cache hit rates

=== Roland Wismduiller :
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2.8.1 Performance Metrics ... ‘I

Efficiency

= Metrics for the utilisation of a parallel computer

= F(p) < 1, the optimum would be E(p) =1

=== Roland Wismduiller .
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2.8.1 Performance Metrics ... n
Scalability
= Typical observations:
Ll A Fixed problem size W " A Fixed number of
- ~.| processors p
(&) (&}
c c
Q0 o
O 3}
LL] LL]

> - >
Number of processors p Problem size W

= Reason: with increasing p: less work per processor, but the same
amount of (or even more) communication

=== Roland Wismduiller :
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2.8.1 Performance Metrics ... ‘I

Scalability ...

= How must the problem size W increase with increasing number
of processors p, such that the efficiency stays the same?

= Answer is given by the isoefficiency function

w Parallel execution time

- T,(W, p) = overhead of parallel execution
w T and W are measured as the number of elementary

operations
w Thus: B(p)
b
= ———— . T,(W,p)
1 — E(p)
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Notes for slide 151:
With
W + To (W,
we get
\%% W .p
S = —
®) =T = W To(W.p)
and )
S(p 144 1
E = = =
2 W 4 To(W, p) 1+ To(W,p)/W
Thus:
To(W,p) _ 1— E(p)
w E(p)
and
E(p)

= 1—7E(p) - To (W, p)
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2.8.1 Performance Metrics ... ‘I

Scalability ...

= |soefficiency function I(p)
= solution of the equation W = K - T,(W, p) w.rt. W
w K = constant, depending on the required efficiency

Good scalability: I(p) = O(p) or I(p) = O(p log p)
= Bad scalability: I(p) = O(p*)

!

= Computation of T, (W, p) by analysing the parallel algorithm

= how much time is needed for communication / synchronisation
and potentially additional computations?

= more details and examples in chapter 2.8.5

=TT Roland Wismdiller .
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2.8.2 Reasons for Performance Loss n

= Access losses due to data exchange between tasks
= ©.g., message passing, remote memory access

= Utilisation losses due to insufficent degree of parallelism
= e.g., waiting for data, load imbalance

= Conflict losses due to shared use of ressources by multiple
tasks
= e.g., conflicts when accessing the network, mutual exclusion

when accessing data

= Complexity losses due to additional work neccessary for the
parallel execution
= e.g., partitioning of unstructured grids

=== Roland Wismduiller :
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2.8.2 Reasons for Performance Loss ... ‘I

= Algorithmic losses due to modifications of the algorithms during
the parallelisation

= e.g., worse convergence of an iterative method

= Dumping losses due to computations, which are executed
redundantly but not used later on
= e.g., lapsed search in branch-and-bound algorithms

= Breaking losses when computations should end

= e.g., with search problems: all other processes must be
notified that a solution has been found

=TT Roland Wismdiller .
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2.8.3 Load Balancing n

Introduction

w For optimal performance: processors should compute equally
long between two (global) synchronisations

= synchronisation: includes messages and program start / end

PO | PO
P1 P1
P2 T\ :} P2
P3 P3
P4 | P4
>t »{

= [ oad in this context: execution time between two synchronisations
= other load metrics are possible, e.g., communication load

= | oad balancing is one of the goals of the mapping phase

=== Roland Wismduiller :
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2.8.3 Load Balancing ... n

Reasons for load imbalance

= Unequal computational load of the tasks

= e.g., atmospheric model: areas over land / water %
= Heterogeneous execution plattform @
= ¢e.g., processors with different speed
w Computational load of the tasks changes dynamically
= e.g., in atmospheric model, depending on the simulated Q
time of day (solar radiation) §
>
= Background load on the processors ©
= ¢e.g., in a PC cluster
5 = Egtlﬁggs\gi/g?gﬂlgr/ verteilte Systeme Parallel Processing (6/15) 156
2.8.3 Load Balancing ... d
(Animated slide)
Example: atmospheric model
90N B Night:
low
execution
time per
task
0
M Day:
high
execution
90S time per
0 180 360 task
= Continents: static load imbalance
= Border between day and night: dynamic load imbalance
=<2Z Roland Wismiller Parallel Processing (6/15) 157
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2.8.3 Load Balancing ... "

Static load balancing

w Goal: distribute the tasks to the processors at / before program
start, such that the computational load of the processors is equal

= Two fundamentally different approaches:

= take into account the tasks’ different computational load when
mapping them to processors

= extension of graph partitioning algorithms

= requires a good estimation of a task’s load

= no solution, when load changes dynamically
= fine grained cyclic or random mapping

= results (most likely) in a good load balancing, even when
the load changes dynamically

= price: usually higher communication cost

==** Roland Wismiiller
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2.8.3 Load Balancing ... d
Example: atmospheric model, cyclic mapping
90N M Night:

low
execution
time per
task

0 0 0 3

L. H Day:
high
execution
B time per
0 180 360  task

90S

w Each processor has tasks with high and low computational load

=== Roland Wismduiller :
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2.8.3 Load Balancing ... ‘I

Dynamic load balancing

= |ndependent (often dyn. created) tasks (e.g., search problem)

= goal: processors do not idle, i.e., always have a task to
process

= even at the end of the program, i.e., all processes finish at
the same time

= tasks are dynamically allocated to processors and stay there
until their processing is finished

= optimal: allocate task with highest processing time first

= Communicating tasks (SPMD, e.g., stencil algorithm)
w goal: equal computing time between synchronisations

= f necessary, tasks are migrated between processors during
their execution

=== Roland Wismduiller .
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2.8.4 Performance Analysis of Parallel Software n

How to determine performance metrics

= Analytical model of the algorithm
= approach: determine computation and communication time

- T(p) — tcomp + tcomm
= computation/communication ratio tcomsp/tcomm allows a
rough estimation of performance

= requires a computation model (model of the computer
hardware)
= Measurement with the real programm
w explicit timing measurement in the code
= performance analysis tools

=== Roland Wismduiller :
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2.8.5 Analytical Performance Modelling "

Models for communication time

w E.g., for MPI  (following Rauber: “Parallele und verteilte Programmierung”)
w point-to-point send: t(m) = ts + t,, - M
w proadcast: t(p,m) = 7 -logp + t,, - m -logp
= Parameters (ts, t,,, 7) are obtained via micro benchmarks
= selectively measure a single aspect of the system
= also allow the deduction of implementation characteristics
= fitting, e.g., using the least square method
= e.g., for point-to-point send:

PC cluster H-A 4111: t, =71.5 us, t,, = 8,6 ns
SMP cluster (remote): t; = 25.6 us, t,, = 8,5 ns
SMP cluster (local): t; = 0,35 us, t,, = 0,5ns
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2.8.5 Analytical Performance Modelling ... n
Example: results of the micro benchmark SKaMPI
g 3 ™1 T L T 1 T T T
¢ '@ | Ping—pong message Measurement
£ — [ exchange with 14I(\3/Iodel — ]
| MPI_Send / MPI_Recv tg =143 s 4
100000 - - tw= 0.0173 ps
10000 E E
- Effects: change in protocol,
TCP segment length, ...
1000 E
Lab H-A 4111
— bslab01/02
100 1 ol 1 M | 1 ol 1 ol 1 ol 1 P
10 100 1000 10000 Message length 1e+07
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2.8.5 Analytical Performance Modelling ... "

Communication protocols in MPI

Protocol Rendezvous protocol
for short messages for long messages
Sender Receiver Sender Receiver
MPI_Send
MPI_Send
)+ Dgpi| P buffers MPI_Recv
message
messzge
message MPI_Recv written t g
in dest. buffer o
destination
y y buffer
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2.8.5 Analytical Performance Modelling ... n

Example: matrix multiplication
= Product C' = A - B of two square matrices

= Assumption: A, B, C are distributed blockwise on p processors
= processor P;; has A;; and B;; and computes C;;

P.; needs A;, and By, fork = 1..../p

§

‘

Approach:
= all-to-all broadcast of the A blocks in each row of processors

w gll-to-all broadcast of the B blocks in each column of
processors

VP
- computation of Cj; = > ~ Ay, - By;
k=1
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2.8.5 Analytical Performance Modelling ... n

(Animated slide)

All-to-all broadcast
= Required time depends on selected communication structure

= This structure may depend on the network structure of the parallel
computer

= who can directly communicate with whom?

= Example: ring topology

7 /\6 /\5 4
—7>\J—6>\/—5> p—1 steps:
4 send "newest"
0 data element to
< )™ 2 ) & successor in ring
0o~ 2 3

w Cost: ts(p — 1) + tum(p — 1) (m: data length)
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2.8.5 Analytical Performance Modelling ... "

(Animated slide)

All-to-all broadcast ...

= Example: communication along a hyper cube
= requires only log p steps with p processors

1. Pairwise exchange
in x direction

2. Pairwise exchange
in y direction

3. Pairwise exchange
in z direction

log p
= Cost: Z (ts +2° tym) =t,logp + tyum(p — 1)
=1
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2.8.5 Analytical Performance Modelling ... n
All-to-all broadcast ...
7 1 1 1 I K I 1
ts =71,5ps
6 F 100000 Bytes i
~1t =8,65ns
. w
5+ 10000 Bytes .
=L _ (Data from
= Lab H-A 4111)
£ '//R
i in i
= .- g
Hypercube
T 1000 Bytes
o L= T T T A0U BYes
10 Processors 40 50 60
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2.8.5 Analytical Performance Modelling ... ‘I

Complete analysis of matrix multiplication

= Two all-to-all broadcast steps between ,/p processors
= each step concurrently in /p rows / columns

= Communication time: 2(ts log(,/P) + tw(n?/p)(v/P — 1))

= . /p multiplications of (n/,/pP) X (n/,/p) sub-matrices
= Computation time: t./p - (n//pP)®> = tn?/p

= Parallel run-time: T'(p) = t.n®/p + tslogp + 2t,,(n?/\/D)

= Sequential run-time: T, = t.n>

=== Roland Wismduiller .
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Notes for slide 169:

W+To (W,p)
P

slide

When we compare the result for T'(p) with the formula T'(p) =
from 151, we get:

To(n,p) = p - (ts log p + 2tw(n’/y/P))
(We use the problem size n instead of the work W here).

Now, to get the isoefficiency function of our matrix multiplication, we must solve the
equation n = K - To(n, p) w.r.t. n. We can do this in approximation by neglecting the
term ts log p. Then we get:

n:K-p-(2tw(n2/\/g_))) :2-K-tw-n2.p%
Or (by dividing both sizes by n and reordering):

1
n— ————
2’K'tw

2
3

p

Thatis n(p) = O(p%), which implies n(p) = O(p). Thus, matrix multiplication
offers (very) good scalability.
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2.8.5 Analytical Performance Modelling ... "

Efficiency of matrix multiplication

1 I I I I I I
Execution time per
8 matrix element:
-~ tc=1.3ns
(&)
c
Q
O
= ts =71,5ps
4 t,=69.2ns
(1 double value)
2T .
(Data from
n=100 | Lab H-A 4111)
0 1 1 1 1 1 1
10 20  Processors 40 50 60
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2.8.6 Performance Analysis Tools n

= Goal: performance debugging, i.e., finding and eliminating
performance bottlenecks

= Method: measurement of different quantities (metrics),
if applicable separated according to:
= execution unit (compute node, process, thread)
= source code position (procedure, source code line)
= time

= Tools are very different in their details

= method of measurement, required preparation steps,
processing of information, ...

= Some tools are also usable to visualise the program execution

==T" Roland Wismdiller .
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2.8.6 Performance Analysis Tools ... ‘I

Metrics for performance analysis

= CPU time (assessment of computing effort)

= \Wall clock time (includes times where thread is blocked)
w Communication time and volume

= Metrics of the operating system:
w page faults, process switches, system calls, signals

= Hardware metrics (only with hardware support in the CPU):
= CPU cycles, floating point operations, memory accesses
= cache misses, cache invalidations, ...

=TT Roland Wismdiller .
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2.8.6 Performance Analysis Tools ... n

Sampling (sample based performance analysis)
w Program is interrupted periodically

= Current value of the program counter is read (and maybe also the
call stack)

= The full measurement value is assigned to this place in the
program, e.g., when measuring CPU time:

= periodic interruption every 10ms CPU time
w CPU_time[current_PC_value] += 10ms

= Mapping to source code level is done offline

w Result: measurement value for each function / source line

==T" Roland Wismdiller .
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2.8.6 Performance Analysis Tools ... ‘I

Profiling and tracing (event based performance analysis)
= Requires an instrumentation of the programs, e.g., insertion of
measurement code at interesting places
= often at the beginning and end of library routines, e.g.,
MPI_Recv, MPI|_Barrier, ...
= Tools usually do the instrumentation automatically
= typically, the program must be re-compiled or re-linked

= Analysis of the results is done during the measurement (profiling)
or after the program execution (tracing)

= Result:
= measurement value for each measured function (profiling,
tracing)
= development of the measurement value over time (tracing)
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2.8.6 Performance Analysis Tools ... n

Example: measurement of cache misses
w Basis: hardware counter for cache misses in the processor

= Sampling based:

= when a certain counter value (e.g., 419) is reached, an
interrupt is triggered

w cache_misses[current_PC_value] += 419

= Event based:

= insertion of code for reading the counters:
old_cm = read_hw_counter(25);
for (j=0;3j<1000;j++)
d += alil[j];
cache_misses += read_hw_counter(25)-old_cm;
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2.8.6 Performance Analysis Tools ... "

Pros and cons of the methods

= Sampling
= |ow and predictable overhead; reference to source code
= |imited precision; no resolution in time

= Tracing
= acquisition of all relevant data with high resolution in time
w relatively high overhead; large volumes of data

= Profiling
w reduced volume of data, but less flexible

=== Roland Wismduiller .
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2.9 A Design Process for Parallel Programs n

Four design steps:

1. Partitioning
w split the problem into many tasks

2. Communication
w specify the information flow between the tasks
w determine the communication structure

3. Agglomeration
w evaluate the performance (tasks, communication structure)
= if need be, aggregate tasks into larger tasks

4. Mapping
= map the tasks to processors

(See Foster: Designing and Building Parallel Programs, Ch. 2)
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2.9 A Design Process for Parallel Programs ...

=3

Split the problem O
Problem \artltLonlng in as many small =
O~O tasks as possible 3
080898 3
803080 5
Communication OOO 508 Data exchange o.
-— between tasks Z
: Merging
Agglomeration
\g{ of Tasks 50
® 0
_5: D
| 35
— Mapping to S8
C\C) %) Mapping Processors 3=
/

C{ Degree of

parallelism
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2.9.1 Partitioning

d

w (Goal: split the problem into as many small tasks as possible

Data partitioning (data parallelism)

= Tasks specify identical computaions for a part of the data

= |n general, high degree of parallelism is possible

= We can distribute:
= input data
= output data
= intermediate data

= |n some cases: recursive partitioning (divide and conquer)

= Special case: partitioning of search space in search problems

=27 Roland Wismdiller :
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2.9.1 Partitioning ... ‘I

Example: matrix multiplication

= Product C = A - B of two square matrices

n
= Cc;j = Z a;r * bkj, forallz,7 =1...n
k=1

= This formula also holds when square sub-matrices A;x, B, Ci;
are considered instead of single scalar elements

= block matrix algorithms:

A111Aq By1!Bq2 C11:C12
_____ ol LT = ol ] Car = At By
Ao 1A > Bo1:Boo Co11Co0 +Aq12*Boy
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2.9.1 Partitioning ... n

Example: matrix multiplication ...
w Distribution of output data: each task computes a sub-matrix of C

= E.g., distribution of C' into four sub-matrices

< A1 Aip ) . ( Bi,1 B ) N < Cii Cip )
Az Az B2, Bz Cz1 Cap2
= Results in four independent tasks:
1. C11 = A1,1-Bi,i +A12-Bay
2. C12=A11-Bi12+ A2 - Bap>
3. C21 =A271-B11+Az2- By,
4. Cy o = Az 1Bz + Az 2 - Ba
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2.9.1 Partitioning ... ‘I

Example: matrix multiplication A- B — C

= Distribution of intermediate data (higher degree of parallelism)
= here: 8 multiplications of sub-matrices

Ai4 By1[B12 Di11[P11.2
[ ] —
A2 1 D1 2.1 D1 22
’ s Cq4Cq2
+ —_—
Co1|Co05
Ao D2 11|D21 2
[ ] —_—
Aso Bs 1/B2o Do 1P2oo
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2.9.1 Partitioning ... n

Example: minimum of an array

w Distribution of input data
= each threads computates its local minimum
= afterwards: computation of the global minimum

==T" Roland Wismdiller .
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2.9.1 Partitioning ... ‘I

Example: sliding puzzle (partitioning of search space)

; g 3 g Goal: find a sequence of
o ol7 h1 moves, which leads to a
sorted configuration
13[1415](12
112] 4] [1]2[3]4] [1]2|3]4| [1]2]3]4 Partitioning of
o o[z i1] [9fio]z 1] [9fo[7[i1] [9fio] [i
13[14[15[12] [13[14[15[12] [3[14[15[12] [3[14[15[12

]
56718 FOUﬂld a
9 hohi1h2| solution:

13[14[15 Finished!

Task 2 Task 3 Task 4
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2.9.1 Partitioning ... n

Task partitioning (task parallelism)

w Tasks are different sub-problems (execution steps) of a problem

= E.g., climate model

Atmosphere model
v v
Hydrological
model Ocean
3 model
Land surface model >

= Tasks can work concurrently or in a pipeline

= max. gain: number of sub-problems (typically small)
= often in addition to data partitioning
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2.9.2 Communication

= Two step approach

= definition of the communication structure
= who must exchange data with whom?
= sometimes complex when using data partitioning
= often simple when using task partitioning

= definition of the messages to be sent

= which data must be exchanged when?
= taking data dependences into account

=== Roland Wismduiller ;
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2.9.2 Communication ...

186

d

Different communication patterns:

= | ocal vs. global communication

= |okal: task communicates only with a small set of other tasks

(its “neighbors”)
= global: task communicates with many/all other tasks

w Structured vs. unstructured communication
= structured: regular structure, e.g., grid, tree

w Static vs. dynamic communication

= dynamic: communication structure is changing during

run-time, depending on computed data

= Synchronous vs. asynchronous communication

w asynchronous: the task owning the data does not know, when

other tasks need to access it

==T" Roland Wismdiller .
*_1* Betricbssysteme / verteilte Systeme Parallel Processing (7/15)

187



2.9.2 Communication ... "

Example for local communication: stencil algorithms

= Here: 5-point stencil (also others are possible)

= Examples: Jacobi or Gauss-Seidel methods, filters for image
processing, ...

=== Roland Wismduiller .
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2.9.2 Communication ... n

Example for global communication: N-body problem

Motion of stars

/@ in a star cluster:

Fogml’m2 1) forces
@/ r2 2) acceleration
3) speed
Task 4) position

= The effective force on a star in a star cluster depends on the
masses and locations of all other stars

= possible approximation: restriction to relatively close stars
= will, however, result in dynamic communication
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2.9.2 Communication ... "

Example for structured / unstructured communication
w Structured: stencil algorithms

w Unstructured: “unstructured grids”

Lake Superior:
simulation of
pollutant
dispersal

JXKE RSN IR
ISOOK P SN

5O
<

%
N
!
0
o
é
5
!

Ay

= grid points are defined at different density
= edges: neighborhood relation (communication)
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2.9.3 Agglomeration n

= So far: abstract parallel algorithms

= Now: concrete formulation for real computers
= |imited number of processors
= costs for communication, process creation, process switching,

= Goals:
w reducing the communication costs

= aggregation of tasks
= replication of data and/or computation

= retaining the flexibility
= sufficently fine-grained parallelism for mapping phase

=== Roland Wismduiller :
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2.9.4 Mapping n

= Task: assignment of tasks to available processors
= (Goal: minimizing the execution time

= Two (conflicting) strategies:
= map concurrently executable tasks to different processors
= high degree of parallelism
= map communicating tasks to the same processor
= higher locality (less communication)

= Constraint: load balancing
= (roughly) the same computing effort for each processor

= The mapping problem is NP complete

=== Roland Wismduiller :
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2.9.4 Mapping ... "

Variants of mapping techniques

= Static mapping
= fixed assignment of tasks to processors when program is
started
= for algorithms on arrays or Cartesian grids:
= often manually, e.g., block wise or cyclic distribution
= for unstructured grids:
= graph partitioning algorithms, e.g., greedy, recursive
coordinate bisection, recursive spectral bisection, ...
= Dynamic mapping (dynamic load balancing)
= assignment of tasks to processors at runtime
= variants:
= tasks stay on their processor until their execution ends
= task migration is possible during runtime

=== Roland Wismduiller .
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2.9.4 Mapping ... '-'

Example: static mapping with unstructured grid

= (Roughly) the same number of grid points per processor

w Short boundaries: small amount of communication

=== Roland Wismduiller :
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3 Parallel Programming with Shared Memory ...

195

Contents

= OpenMP basics

= | oop parallelization and dependeces

Exercise: The Jacobi and Gauss/Seidel Methods
OpenMP synchronization

Task parallelism with OpenMP

Tutorial: tools for OpenMP

Exercise: A solver for the Sokoban game

Excursion: Lock-Free and Wait-Free Data Structures

L 28 2N R N AN J

Literature

= Wilkinson/Allen, Ch. 8.4, 8.5, Appendix C
w Hoffmann/Lienhart
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*_1* Betricbssysteme / verteilte Systeme Parallel Processing (8/15)

196



3 Parallel Programming with Shared Memory ... ‘I

Approaches to programming with threads

w Using (system) libraries
w Examples: POSIX threads, Intel Threading Building Blocks
(TBB)
= As part of a programming language
w Examples: Java threads (= BS.l), C++ threads (= 1.3)

= Using compiler directives (pragmas)
w Examples: OpenMP (= 3.1)

=TT Roland Wismdiller .
—== Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 197

3.1 OpenMP Basics n

Background

= Thread libraries (for FORTRAN and C) are often too complex
(and partially system dependent) for application programmers
= wish: more abstract, portable constructs

= OpenMP is an inofficial standard
= since 1997 by the OpenMP forum (www.openmp . org)
= API for parallel programming with shared memory using
FORTRAN /C/C++
= source code directives
= |ibrary routines
= environment variables

= Besides parallel processing with threads, OpenMP also supports
SIMD extensions and external accelerators (since version 4.0)

=== Roland Wismduiller :
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3.1 OpenMP Basics ... ‘I

Parallelization using directives

= The programmer must specify
= which code regions should be executed in parallel
= where a synchronization is necessary

= This specification is done using directives (pragmas)
= special control statements for the compiler
= unknown directives are ignored by the compiler

w Thus, a program with OpenMP directives can be compiled
= with an OpenMP compiler, resulting in a parallel program
= with a standard compiler, resulting in a sequential program

=== Roland Wismduiller .
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3.1 OpenMP Basics ... n

Parallelization using directives ...

w Goal of parallelizing with OpenMP:

w distribute the execution of sequential program code to several
threads, without changing the code

w identical source code for sequential and parallel version

= Three main classes of directives:
= directives for creating threads (parallel, parallel region)

w within a parallel region: directives to distribute the work to the
individual threads
= data parallelism: distribution of loop iterations (for)
= task parallelism: parallel code regions (sections) and
explicit tasks (task)

= directives for synchronization

=== Roland Wismduiller :
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3.1 OpenMP Basics ... ‘I

Parallelization using directives: discussion

= Compromise between
= completely manual parallelization (as, e.g., with MPI)
= automatic parallelization by the compiler

= Compiler takes over the organization of the parallel tasks
= thread creation, distribution of tasks, ...

w Programmer takes over the necessary dependence analysis
= which code regions can be executed in parallel?
= enables detailed control over parallelism
= pbut: programmer is responsible for correctness

=== Roland Wismduiller .
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3.1 OpenMP Basics ... n

Compiling and executing OpenMP programs

= Compilation with gcc (g++)
w typical call: g++ -fopenmp myProg.cpp -o myProg
= OpenMP 4.0 is supported since gcc 4.9

w Execution: identical to a sequential program
= e.9.: ./myProg
= (maximum) number of threads can be specified in environ-
ment variable OMP_NUM_THREADS
= e.g.. export OMP_NUM_THREADS=4

= gpecification holds for all programs started in the same
shell

= also possible: temporary (re-)definition of OMP_NUM_THREADS
= e.g.: OMP_NUM_THREADS=2 ./myProg

=== Roland Wismduiller :
=== Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 202



d

3.1.1 The parallel directive

(Animated slide)

An example (= 03/firstprog.cpp)

Program Execution
main() { % export OMP_NUM_THREADS=2
cout << "Serial\n"; % ./firstprog
#fpragma omp parallel Serial
{ Parallel
cout << "Parallel\n"; Parallel
} Serial
cout << "Serial\n";
} % export OMP_NUM_THREADS=3
% ./firstprog
Compilation SEEREL
Parallel
g++ —fopenmp -o tst Parallel
firstprog.cpp Parallel
Serial
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3.1.1 The parallel directive ... d
Execution model: fork/join
cout << "Serial\n";
#fpragma omp parallel
{

| Fork

cout << "Par..

cout << "Par..

cout << "Serial\n";

Join

=" Roland Wismdiller
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3.1.1 The parallel directive ... d

Execution model: fork/join ...
= Program starts with exactly one master thread
= \When a parallel region (#pragma omp parallel) is reached,
additional threads will be created (fork)
= environment variable OMP_NUM_THREADS specifies the total
number of threads in the team
w The parallel region is executed by all threads in the team
w at first redundantly, but additional OpenMP directives allow a
partitioning of tasks
= At the end of the parallel region:
= all threads terminate, except the master thread

w master thread waits, until all other threads have terminated
(join)

=== Roland Wismduiller .
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3.1.1 The parallel directive ... n

Syntax of directives (in C/ C++)

w #pragma omp <directive> [<clause list> ]
w <clause_list>: List of options for the directive

= Directive only affects the immediately following statement or the
immediately following block, respectively
= static extent (statischer Bereich) of the directive

#pragma omp parallel
cout << "Hello\n"; // parallel
cout << "Hi there\n"; // sequential again

= dynamic extent (dynamischer Bereich) of a directive

= also includes the functions being called in the static extent
(which thus are also executed in parallel)

=== Roland Wismduiller :
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3.1.1 The parallel directive ... d

Shared and private variables

= For variables in a parallel region there are two alternatives
= the variables is shared by all threads (shared variable)

= all threads access the same variable
- usually, some synchronization is required!

= each thread has its own private instance (private variable)

= can be initialized with the value in the master thread
= value is dropped at the end of the parallel region

= For variables, which are declared within the dynamic extent of a
parallel directive, the following holds:
= |ocal variables are private
= static variables and heap variables (new) are shared
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3.1.1 The parallel directive ... d

Shared and private variables ...

= For variables, which have been declared before entering a
parallel region, the behavior can be specified by an option of the
parallel directive:

w private ( <variable_ list>)

= private variable, without initialization
w firstprivate (<variable_list>)

= private variable

= initialized with the value in the master thread
w shared ( <variable_list>)

= shared variable
w shared is the default for all variables

=== Roland Wismduiller :
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Notes for slide 208:

private and firstprivate are also possible with arrays. In this case, each thread
gets its own private array (i.e., in this case an array variable is not regarded as a pointer,
in contrast to the usual behavior in C/C++). When using firstprivate, the entire array
of the master thread is copied.

Global and static variables can be defined as private variables by a separate directive
#pragma omp threadprivate( <variable_list> ). An initialization when entering a
parallel region can be achieved by using the copyin option.

208-1

3.1.1 The parallel directive ... n

Shared and private variables: an example (= 03/private.cpp)

Each thread has a (non-initialized) copy of i Each thread has an

int i =0, j =1, k = 2; initialized copy of j

#pragma omp omp parallel private(i) firstprivafZYS)
{

int h = random() % 100; == hisprivate

Cout << IIP: i=|| << 1 << II, j=|| << J
<< H, k=u << k << n, h=n << h << "\n”;
i++; j++; k+t+; = Accesses to k
by usually should be
cout << "S: i=" << 1 << T, J=t << synchronized!

<< n, k=" << k << n\nn;

Output (with 2 threads):
P: i=1028465, j=1, k=2
P: i=-128755, j=1, k=3,
S: i=0, j=1, k=4
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3.1.2 Library routines "

= OpenMP also defines some library routines, e.g.:
w int omp_get_num_threads(): returns the number of threads
= int omp_get_thread_num(): returns the thread number
= between 0 (master thread) and omp_get_num_threads()-1
= int omp_get_num_procs(): number of processors (cores)
w void omp_set_num_threads(int nthreads)

= defines the number of threads (maximum is
OMP_NUM_THREADS)

w double omp_get_wtime(): wall clock time in seconds
= for runtime measurements
w N addition: functions for mutex locks

= When using the library routines, the code can, however, no longer
be compiled without OpenMP ...
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3.1.2 Library routines ... n

Example using library routines (= 03/threads. cpp)

#include <omp.h>
int me;
omp_set_num_threads (2) ; // use only 2 threads
#pragma omp parallel private(me)
{
me = omp_get_thread_num(); // own thread number (0 or 1)
cout << "Thread " << me << "\n";

if (me == 0) // threads execute different code!
cout << "Here is the master thread\n";
else

cout << "Here is the other thread\n";

}

= |n order to use the library routines, the header file omp.h must be
included
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3.2 Loop parallelization ‘I

Motivation

= |mplementation of data parallelism
= threads perform identical computations on different parts of
the data
= Two possible approaches:
= primarily look at the data and distribute them

= distribution of computations follows from that
- e.g., with HPF or MPI

= primarily look at the computations and distribute them

= computations virtually always take place in loops
(= loop parallelization)

= no explicit distribution of data

= for programming models with shared memory

=== Roland Wismduiller .
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3.2 Loop parallelization ... n

3.2.1 The for directive: parallel loops

#pragma omp for [<clause_list>]
for(...)

= Must only be used within the dynamic extent of a parallel
directive

= Execution of loop iterations will be distributed to all threads
= |oop variable automatically is private

= Only allowed for “simple” loops
= NO break Or return, integer loop variable, ...
= No synchronization at the beginning of the loop

= Barrier synchronization at the end of the loop

= unless the option nowait is specified
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Notes for slide 213:

= The option nowait is not accepted in a #pragma omp parallel for (as atthe
end of a parallel region, there always is a global synchronisation)

= Besides the option nowait, the following additional options can be specified in the
<clause_list> of a for directive:

= private, firstprivate, lastprivate, shared: see slides 208 and 218
(These options are only accepted in a #pragma omp parallel for, notin
a #pragma omp for inside a parallel region)

schedule: see slide 215
ordered: see slide 251
reduction: see slide 249

collapse (<num>): this option tells the compiler that the next <num> (perfectly)

nested loops should be collapsed into a single loop, whose iterations will then
be distributed.

L2 B 2

213-1
3.2.1 The for directive: parallel loops ... n
Example: vector addition
double a[N], b[N], c[N]; Short form for
int i; #fpragma omp parallel
#fpragma omp parallel for {
for (i=0; i<N; i++) { #pragma omp for

ali] = b[i] + c[il]; y
}

= Each thread processes a part of the vector
= data partitioning, data parallel model

= Question: exactly how will the iterations be distributed to the
threads?

= can be specified using the schedule option

w default: with n threads, thread 1 gets the first n-th of the
iterations, thread 2 the second n-th, ...
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3.2.1 The for directive: parallel loops ... ‘I

Scheduling of loop iterations
w Option schedule( <class>[, <size>])

= Scheduling classes:

= static: blocks of given size (optional) are distributed to the
threads in a round-robin fashion, before the loop is executed

w dynamic: iterations are distributed in blocks of given size,
execution follows the work pool model

= petter load balancing, if iterations need a different amount
of time for processing

w cuided: like dynamic, but block size is decreasing
exponentially (smallest block size can be specified)

= petter load balancing as compared to equal sized blocks
= auto: determined by the compiler / run time system
= runtime: specification via environment variable
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3.2.1 The for directive: parallel loops ... d
Scheduling example(= 03/1loops. cpp)
int i, j;
double x;

#pragma omp parallel for private(i,j,x) schedule(runtime)
for (i=0; i<40000; i++) {
x = 1.2;
for (j=0; j<i; j++) { // triangular loop
x = sqrt(x) * sin(x*x);
+
+

= Scheduling can be specified at runtime, e.qg.:
= export OMP_SCHEDULE="static,10"

= Useful for optimization experiments
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3.2.1 The for directive: parallel loops ... ‘I

Scheduling example: results

= Runtime with 4 threads on the lab computers:
OMP_SCHEDULE | "static" | "static,1" | "dynamic" | "guided"
Time | 31s | 19s | 18s | 18s

= | 0oad imbalance when using "static"
= thread 1: i=0..9999, thread 4: i=30000..39999

= "static,1" and "dynamic" use a block size of 1
= each thread executes every 4th iteration of the i loop
= can be very inefficient due to caches (false sharing, = 5.1)
= remedy: use larger block size (e.g.: "dynamic,100")

= "guided" often is a good compromize between load balancing
and locality (cache usage)
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3.2.1 The for directive: parallel loops ... d

Shared and private variables in loops

= The parallel for directive can be supplemented with the
options private, shared and firstprivate (see slide 207 ff.)
= |n addition, there is an option lastprivate
= private variable
= after the loop, the master thread has the value of the last
iteration

= Example:
int i = 0;
#pragma omp parallel for lastprivate(i)
for (i=0; i<100; i++) {

+

std::cout << "i=" << i << std::endl; // printsthe value 100
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3.2.2 Parallelization of Loops ‘I

(Animated slide)

When can a loop be parallelized?

for (i=1; i<N; i++) for (i=1; i<N; i++) for (i=0; i<N; i++)
af[i] = a[i] af[i] = a[i-1] af[i] = a[i+1]
+ b[i-1]; + b[i]; + b[i];
No dependence True dependence

= Optimal: independent loops (forall loop)
= |oop iterations can be executed concurrently without any
synchronization
= there must not be any dependeces between statements in
different loop iterations
= (equivalent: the statements in different iterations must fulfill the
Bernstein conditions)
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3.2.2 Parallelization of Loops ... n
(Animated slide)

Handling of data dependences in loops

= Anti and output dependences:
= can always be removed, e.g., by consistent renaming of
variables
= in the previous example:
#fpragma omp parallel
{
#pragma omp for
for (i=1;i<=N;i++)
a2[i] = a[i];
#pragma omp for
for (i=0; i<N; i++)
a[i] = a2[i+l] + b[i];
= the barrier at the end of the first loop is necessary!
220
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3.2.2 Parallelization of Loops ... "

Handling of data dependences in loops ...
= True dependence:

= introduce proper synchronization between the threads
= e.g., using the ordered directive (= 3.4):

#pragma omp parallel for ordered

for (i=1; i<N; i++) {
//'long computation of b[i]
#pragma omp ordered
ali] = al[i-1] + b[i];

}

= disadvantage: degree of parallelism often is largely reduced
= sometimes, a vectorization (SIMD) is possible (= ??), e.g.:
#pragma omp simd safelen(4)
for (i=4; i<N; gui++)
ali] = al[i-4] + b[i];

===" Roland Wismdiller
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3.2.3 Simple Examples n
(Animated slide)

Matrix addition

double a[N] [N]; double a[N] [N];
double b[N] [N]; double b[N] [N];
. . . int i,3
int 1, 3j;
s AL Lo for (i=0; i<N; i++) {
fo; (1:9’ 1<§’ 1+f) { #pragma omp parallel for
or

for (3j=0; j<N; j++) {
ali]l[j] += bI[i]l[3];

} }
} e y LT
No dependences in ’j' loop: e
— b’ is read only -7

Inner loop can be

— Elements of 'a’ are always executed in parallel

read in the same ’j iteration,
in which thay are written
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3.2.3 Simple Examples ... "

(Animated slide)

Matrix addition

double a[N] [N]; double a[N] [N];
double b[N] [N]; double b[N] [N];
. .o int i, j;
int 1, 3;
#pragma om arallel for
for (i=0; i ; di++) | pragm P P

private (j)
for (i=0; i<N; i++) {
for (3j=0; Jj<N; Jj++) {
a[i]l[3] += bIill[3];

j=0; J<N; J++)
a[i] [3] += b[i]l[3]]’;

No dependences in i’ loop: .
— b’ is read only - - /O o | 5
e -~ uter loop can be
Elem.ents of 'a ar’.e, glways executed in parallel
read in the same i’ iteration,

in which they are written Advantage: less overhead!
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3.2.3 Simple Examples ... n

Matrix multiplication

double a[N][N], b[N][N], c[N]I[N];
int i, j,k;
for (i=0; i<N; i++) {
for (j=0; Jj<N; Jj++) {
c[i]l[3] = O;
for (k=0f"k<NL~F
c[i][3] = cli] []]

True dependece in the 'k’ loop

af[i] [k] * b[k][3];
No dependences in the ’i’ and ’j’ loops

= Both the i and the j loop can be executed in parallel

w Usually, the outer loop is parallelized, since the overhead is lower
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3.2.3 Simple Examples ... "

(Animated slide)

Removing dependences

double a[N], b[N], a2[N];

int i;
double a[N], b[N]; double val = 1.2;
int i; #pragma omp parallel
double val = ¢ #fpragma omp for

for (i=f% i for (i=1; i<N; i++)

. -1 jl> a2[i] = al[i];
b!:'—ll —‘a:[;:] *alpl; #pragma omp for
a[z<l] =.val; lastprivate (i)
} /3<: for (i=1; i<N; i++)
a[iZl] = B[0]; b[i-1] = a2[i] * a2[i];

af[i-1] val;

a[i-1l] = b[0];

Anti depend. between iterations ——= Renaming + barrier

True dependece between

_ ——= lastprivate(i) + barriers
loop and environment
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3.2.4 Dependence Analysis in Loops '-'

(Animated slide)

Direction vectors

= |s there a dependence within a single iteration or between
different iterations?

St: = b[i] + c[i]; /}=)
s2: d[i]* 5; Direction vector:

} S1 and S2 in same iteration

S1 in earlier iteration than S2

St 5}5/82

S1in earlier iteration of i’
;oJH) | and’j’ loop than S2
bIi][3] + 2; S1 6t(<</)/32
(ali-11[3-1]1 - b[il[3]; ’

S1 5. S2
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3.2.4 Dependence Analysis in Loops ... ‘I

Formal computation of dependences

w Basis: Look for an integer solution of a system of (in-)equations

= Example: Equation system:
for (i=O; 1<10; i++ { 0< ,1:1 < 10
for[.(j:é);.fjlki; j++) { ng‘z <10
alix10+ = ... . .
c.. = aJ[i*20+j—1] ; 0= ‘7.1 < z.l
} 0 < j2 <2
1 1021 + 31 = 2022 + j2 — 1

= Dependence analysis always is a conservative approximation!
= unknown loop bounds, non-linear index expressions, pointers

(aliasing), ...
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3.2.4 Dependence Analysis in Loops ... n

Usage: applicability of code transformations

= Permissibility of code transformations depends on the (possibly)
present data dependences
w E.g.: parallel execution of a loop is possible, if
= this loop does not carry any data dependence
= i.e., all direction vectors have the form (..., =,...) or
(cees Fyeeey*y...)  [red: considered loop]
w E.g.: loop interchange is permitted, if
= |oops are perfectly nested
= |oop bounds of the inner loop are independent of the outer loop
= no dependences with direction vector (..., <, >, ...)
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Notes for slide 228:

Here is an example with a dependence vector (>, *), which means that the inner loop
(i.e. the j-loop) can be parallelized:
for (i=1; i<N; i++) {
#pragma omp parallel for
for (j=1; j<N; j++) {
alil [j] = b[j]l + cl[jl; // St
d[j] = ali+1]1[j-1] + 5; /S2
}
}

There is an anti-dependence from S2 to S1 (consider e.g. a[3][3]: it is read in iteration
i=2, j=4 and is written later in iteration i=3, j=3.

However, this dependence is not carried by the j-loop, but by the i-loop: If we con-
sider a fixed iteration of the i-loop, e.g., i=2, then the j-loop never reads and writes
the same element of a. E.g., it writes a[2] [4] in iteration j=4, but reads a[3] [4] in
iteration j=5.

On the other hand, in iteration, e.g., i=2, the body of the i-loop reads the elements
a[3][0..N-1], and later in iteration i=3, it writes the elements a[3] [1. .N], so we
have a loop carried (anti-)dependence in the i-loop.

228-1

The dependencies can be visualized in a diagram showing the iteration space of the
loops, where each loop iteration is shown as a dot. Figure a) shows that although there
are dependencies, the iterations of the j-loop can be carried out concurrently (indi-
cated by the green bars in the background), as there is no dependene between the
iterations.

Note that when looking at the outer i-loop, we have to consider its complete body as
one statement (i.e., we have to look at the union of all iterations of the inner j-loop),
so we end up with the picture in figure b). We immediately see that this is a sequential
loop.

a) j=1 j=2 j=8 j=4 j=5 j=6 j=7 b) j=1..N
i=17@ i=1
. _ — Dependencies
=2 =2 between loop
i=3 i=3 iterations.
i=4 |=4
i=5 i=5 — Sequential
6 6 execution order.
i=7 (] |=7

(Actually, figure a) shows that we also could execute the j-loop in parallel, if we interchange the loops, such that the j-loop becomes the
u outer loop and takes care about carrying the dependencies.)
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3.2.4 Dependence Analysis in Loops ... ‘I

Example: block algorithm for matrix multiplication

DO I =1,N
DO J = 1,N
K =1,
( J)—A(I J)+B(I,K)*c(K,J) P° IT = 1,N,IS
DO JT = 1,N,JS
Do;[= N DO KT = 1,N,KS
Strip DO I = IT, MIN(N,IT+IS-1)
mining Do IT-l N, IS DO J = JT, MIN(N,JT+JS-1)
DO I = IT, MIN(N,IT+IS-1) DO K = KT, MIN(N,KT+KS—1)
DO IT = 1,N, IS A(I,J)=A(I,J)+B(I,K)*C(K,J)

DO I = IT, MIN(N,IT+IS-1)
DO JT = 1,N,JS ___——’/// Loop
DO J = JT, MIN(N,JT+JS-1) interchange
DO KT = 1,N,KS

DO K = KT, MIN (N,KT+KS-1)
A(I,J)=A(I,J)+B(I,K)*C(K,J)
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3.2.4 Dependence Analysis in Loops ... n

Example: loop splitting

= Consider the following loop:
for (i=1; i<N-1; i++) {
ali] = (cl[i-1] + cl[i+1]1)/2; // St
bl[i] = ali-1]; // S2
}

= We have S1 6(<) 52, which prevents parallelization of the loop
without synchronization

= However, since we do not have any dependence S2 §(«) S1,
loop splitting is permitted, which results in:
for (i=1; i<N-1; i++)
ali]l = (c[i-1] + c[i+1]1)/2; //sd
for (i=1; i<N-1; i++)
b[i] = ali-1]; /] S2
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3.2.4 Dependence Analysis in Loops ... ‘I

Example: loop splitting ...
= Execution of the original loop:
i=1 i=2 i=3 i=4 i=5 - i=N-1

81\§\S1\Qt\81\§[\81\§[\81\§\81

S2 S2 S2 S2 S2 S2
= Execution of the transformed loop:

i=1 =2 =3 i=4 i=5 - i=N-1

ST+ S1_ ¢ S1_ ¢+ S1_ ¢+ S1_ ¢+ St
) ) ) ) o)
SZ\SZ\SZ\SQ\SZ\SZ
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods n

Numerical solution of the equations for thermal conduction

= Concrete problem: thin metal plate
= given: temperature profile of the boundary
= wanted: temperature profile of the interior (at equilibrium)

= Approach:

= discretization: consider the temperature only at equidistant
grid points

= 2D array of temperature values
= jterative solution: compute ever more exact approximations

= new approximations for the temperature of a grid point:
mean value of the temperatures of the neighboring points
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... [I

Numerical solution of the equations for thermal conduction ...

e ¢ o6 06 0 06 06 0 0 0 0 0 o o of[L,j]=025%(ti-1,j]+tfi,j-1]+
© © 06 06 ¢ 0 06 ¢ 0 0 0 0 0 o o + tfi,j+1] + tfi+1,)] )

Metal plate
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... n

Variants of the method

w Jacobi iteration

= {0 compute the new values, only the values of the last iteration
are used

= computation uses two matrices

w Gauss/Seidel relaxation

= {0 compute the new values, also some values of the current
iteration are used:

- t[t — 1, 7] and t[z,5 — 1]
= computation uses only one matrix
= ysually faster convergence as compared to Jacobi
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... n

Variants of the method ...

Jacobi Gauss/Seidel
do { do {
for (i=1;i<N-1;i++) { for (i=1;i<N-1;i++) {
for (j=1; j<N-1; j++) { for (j=1; j<N-1; j++) {
b[i][j] = 0.25 * a[i]l[3j] = 0.25 *
(a[i-11[3]1 + ...); ) (a[i-1]1[3]1 + ...);

} }
for (i=1;i<N-1;i++) { } until (converged);

for (j=1; j<N-1; j++) {
a[i]l[j] = bIi]l[3];
}

} until (converged);
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

(Animated slide)

Dependences in Jacobi and Gauss/Seidel
w Jacobi: only between the two < loops

w Gauss/Seidel: iterations of the 2, 3 loop depend on each other
j=1 j=2 j=3 j=4 j=5 j=6 j=7

=1 I:‘ Sequential

i=2 ¢ execution
— order

=3 o> ¢

H .

=4 =1 The figure

=5 = shows the loop

o iterations, not

=6 =1 the matrix
3

i=7 *—> ¢ elements!
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... n

(Animated slide)

Parallelisation of the Gauss/Seidel method

w Restructure the 2, 57 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop
w problem: varying degree of parallelism

SE9008 %2 N
909002 U
907 0NN
RN RN
SL9e NN NLNE
RRNNNN

-
-

-
-

=27= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 237



3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Loop restructuring in the Gauss/Seidel method

w Row-wise traversal of the matrix:
for (i=1; i<n-1; i++) {
for (j=1; j<n-1; j++) {
alil[j] = ...;

= Diagonal traversal of the matrix (= 03/diagonal.cpp):
for (ij=1; ij<2*n-4; ij++) {
int ja = (ij <= n-2) 71 : ij-(n-3);
int je = (ij <= n-2) ? ij : n-2;
for (j=ja; j<=je; j++) {
i=1j-j+1;

alil [j1 = ...;
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... n

(Animated slide)

Alternative parallelization of the Gauss/Seidel method

= Requirement: number of iterations is known in advance
= (or: we are allowed to execute a few more iterations after
convergence)
= Then we can use a pipeline-style parallelization
= synchronisation via ordered (= 3.4.4)

k—1 K k+1 k+2 i —
TO et HrorrerHerrreHinn . foror TOT k-
=1
\ i s Sl
Tt —Hron HenHinn iv1l 0
\ EEGEg
T2 // it HrooorHurrnrHrnnng P T1: k-1
T3 u%}II 1111 HI/fFIIIIH+
. . A
lteration of outer lteration of Synchronisation
'do’ loop (index: k) i’ loop
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ['

Results

= Speedup using g++ -0 on bslab10 in H-A 4111 (eps=0.001):

Jacobi Gauss/Seidel (diagonal)
Thr. || 500 | 700 | 1000 | 2000 | 4000 || 500 | 700 | 1000 | 2000 | 4000
11090909 |09 |09|18|20|16 | 16 | 1.3
2 ||18|15| 14 |14 |14 ||35|37]| 21 | 26 | 2.6
3 ||26|20| 16 | 16 | 1.6 ||[40(44| 25 | 2.7 | 3.1
4 (1133|2317 |16 | 16 |[41[48| 3.0 | 3.0 | 3.5
= Slight performance loss due to compilation with OpenMP
= Diagonal traversal in Gauss/Seidel improves performance
= High speedup with Gauss/Seidel at a matrix size of 700
= data size: ~ 8MB, cache size: 4MB per dual core CPU
=<=Z Roland Wismiller Parallel Processing (9/15) 240
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Notes for slide 240:

Results of the pipelined parallelization of the Gauss/Seidel method
(g++ -0, bslab10, eps=0.001):

Diagonal traversal Pipelined parallelization
Thr. || 500 [ 700 | 1000 | 2000 | 4000 || 500 | 700 | 1000 | 2000 | 4000
1 18(20| 16 [ 16 | 1.3 (|[1.0|1.0| 1.0 | 1.0 | 1.0
2 ||85(|37|21 |26 |26 {1919 19 |19 | 19
3 ||40]|44| 25 | 27 | 31 ||27 (27| 27 | 26 | 2.7
4 ||41]148| 30 | 30 | 351{24(33| 35| 32| 33

240-1




3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... "

Speedup on the HorUS cluster: Jacobi

o
S L -
©
()]
()
o L -
wn
1000
101 500 T
ol 700 l
6 i
.l 2000 |
4000
2r -
0 1 1 1 1 1 1 1
2 4 6 8 10 12 Threads
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... n

Speedup on the HorUS cluster: Gauss/Seidel (diagonal)

o

S L i

©

(O]

(]

o L .

w

10 -

8 _

6 _
4000

4 1000 -
2000

2 700 .
500

0 1 1 1 1 1 1 1

2 4 6 8 10 12 Threads
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3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Speedup on the HorUS cluster: Gauss/Seidel (pipeline)

o
S L 4
§o]
@
®
QL 4
(@)
10 -
8r 4
6 4
1000
4 4000
2000
B 700 4
2 +—t+—+—+—+—+—+ 500
0 1 1 1 1 1 1 1
2 4 6 8 10 12 Threads
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3.4 OpenMP Synchronization n

= \When using OpenMP, the programmer bears full responsibility for
the correct synchronization of the threads!

= A motivating example:
int j = O;
#pragma omp parallel for
for (int i=1; i<N; i++) {
if (alil > al[jD)
J =1
}

= when the OpenMP directive is added, does this code fragment
still compute the index of the largest element in j?

= the memory accesses of the threads can be interleaved in an
arbitrary order = nondeterministic errors!
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3.4 OpenMP Synchronization ... ‘I

Synchronization in OpenMP
= Higher-level, easy to use constructs

= |mplementation using directives:
= critical: critical section
atomic: atomic operations
ordered: execution in program order
barrier: barrier
single and master: execution by a single thread
taskwait and taskgroup: wait for tasks (= 3.5.2)
flush: make the memory consistent

= memory barrier (= 2.4.2)
= implicitly executed with the other synchronization directives

F¥F ¥5F 5 8
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3.4 OpenMP Synchronization ... n

3.4.1 Critical sections

#pragma omp critical [(<name>)]
Statement / Block

w Statement / block is executed under mutual exclusion

= |n order to distinguish different critical sections, they can be
assigned a name
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3.4 OpenMP Synchronization ... ‘I

3.4.2 Atomic operations

#pragma omp atomic [ read |write|update|capture][seq cst]
Statement / Block

w Statement or block (only with capture) will be executed atomically
= ysually by compiling it into special machine instrcutions

= Considerably more efficient than critical section
= The option defines the type of the atomic operation:
= read /write: atomic read / write

= update (default): atomic update of a variable

= capture: atomic update of a variable, while storing the old or
the new value, respectively

= Option seq_cst: enforce memory consistency (f1ush)
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Notes for slide 247:

Read and write operations are atomic, only if they can be implemented using a single
machine instruction. With larger data types it may happen that more than one machine
word must be read or written, respectively, which requires several memory accesses.
In these cases, atomic read and atomic write can be used to enforce an atomic
read or atomic write, respectively.
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3.4.2 Atomic operations ...

Examples

= Atomic adding:

#pragma omp atomic update
x += ali]l * aljl;

= the right hand side will not be evaluated atomically!

Atomic fetch-and-add-:

#pragma omp atomic capture
{ o0ld = counter; counter += size; }

Instead of +, all other binary operators are possible, too

With OpenMP 4, an atomic compare-and-swap can not yet be
implemented

= use builtin functions of the compiler, if necessary

w (OpenMP 5.1 introduces a compare clause)
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Notes for slide 248:

When using the atomic directive the statement must have one of the following forms:

-

-

-

With the read option: v = x;
With the write option: x = <expr>;

With the update option (or without option): x++; ++x; x--; ++x;
X <binop>= <expr>; x = X <binop> <expr>; x = <expr> <binop> Xx;

With the capture option: v = x++; v = ++x; Vv = x-—; VvV = ++x;
v = X <binop>= <expr>; v = x = x <binop> <expr>;
v = x = <expr> <binop> x;

Here, x and v are Lvalues (for example, a variable) of a scalar type, <binop> is one
of the binary operators +, *, -, /, &, =, |, << or >> (not overloaded!), expr is a scalar
expression.

Note that expr is not evaluated atomically!
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The capture option can also be used with a block, which has one of the following
forms:

{ v = x; x <binop>= <expr>; } { x <binop>= <expr>; v = x; }

{ v =x; x = x <binop> <expr>; } { v = x; x = <expr> <binop> x; }
{ x = x <binop> <expr>; v = x; } { x = <expr> <binop> x; v = x; }
{ v =2x; x = <expr>; }

{v=x; x+t+t; } { v =x; ++x; }

{ ++x; v = x; } { x++; v = x; }

{v=x; x-; } {v=x --x; }

{ --x; v=x;} { x—-; v=x;}

248-2

3.4 OpenMP Synchronization ...

3.4.3 Reduction operations

= Often loops aggregate values, e.g.:
int a[N];
int sum = O0;
#fpragma omp parallel for reduction(+: sum)

for (int i=0; i<N; i++){ \\\\

sum += a[i]; <$\\\\\\\\
} At the end of the loop, 'sum’

printf ("sum=%d\n", sum) ; contains the sum of all elements

w reduction saves us a critical section

= each thread first computes its partial sum in a private variable

= after the loop ends, the total sum is computed

= |nstead of + is is also possible to use other operators:
- % & | ° && || min max

= in addition, user defined operators are possible
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3.4.3 Reduction operations ... "

= |n the example, the reduction option transforms the loop like this:

int a[N];
int sum = 0;

#fpragma omp parallel
{

int lsum = 0; //local partial sum
# pragma omp for nowait ——— No barrier at the end
for (int i=0; i<N; i++) { oftheloop
lsum += a[i];
}
# pragma omp atomic
sum += lsum; ———— Add local partial sum
} to the global sum
printf ("sum=%d\n", sum) ;
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3.4 OpenMP Synchronization ... n

3.4.4 Execution in program order

#fpragma omp for ordered
for(...) {

#fpragma omp ordered
Statement / Block

}

= The ordered directive is only allowed in the dynamic extent of a
for directive with option ordered

= recommendation: use option schedule(static,1)
w Or schedule(static,n) with small n

= The threads will execute the instances of the statement / block
exacly in the same order as in the sequential program

=== Roland Wismduiller :
=== Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 251



3.4.4 Execution in program order ...

Execution with ordered

#pragma omp for ordered lterations —
for (i=0; i<N; i++) { i=0) (i=1) (i=2) -+ (i=N-1
S1; ( | ) ( | ) ( )
#pragma omp ordered
S2;
S3; S
} > St S1
5 52 -
3 S2 |
I S2 ‘
S3
S3 33 S2
| S3
Barrier ' ' |
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3.4.4 Execution in program order ...

d

Execution with ordered ...

= Since OpenMP 4.5: ordered also allows to explicitly specify

dependencies that must be met

= Example:
#pragma omp parallel for ordered(1)
for (int i=3; i<100; i++) {
#pragma omp ordered depend(source)
alil] = ...;
#pragma omp ordered depend(sink: i-3)
... = ali-3];
}

= Argument of ordered: number of nested loops to be considered

= allows to specify dependencies in nested loops
- e.0.....(sink: i-1,j)
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*_1* Betricbssysteme / verteilte Systeme Parallel Processing (9/15)

253



Notes for slide 253:

Example for a nested loop with dependencies:
#pragma omp parallel for ordered(2)
for (int i=1; i<100; i++) {
for (int j=1; j<100; j++) {
#pragma omp ordered depend(source)
alil[j] = ...;
#pragma omp ordered depend(sink: i-1,j) depend(sink: i, j-1)
. = ali-1]1[j]1 + alil[j-1];
}
}

In an analogous way, the ordered directive allows to parallelize the Gauss/Seidel-
method in a pipeline style (= page 239).
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3.4 OpenMP Synchronization ... n

3.4.5 Barrier

#fpragma omp barrier

= Synchronizes all threads
w ecach thread waits, until all other threads have reached the
barrier
= |mplicit barrier at the end of for, sections, and single directives
= can be removed by specifying the option nowait
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3.4.5 Barrier ...

Example (= 03/barrier.cpp)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define N 10000
float al[N][N];
main() {
int i, j;
#pragma omp parallel
{
int thread = omp_get_thread_num();
cout << "Thread " << thread << ": start loop 1\n";

=== Roland Wismduiller .
~=_I= Betriebssysteme / verteilte Systeme Parallel Processing (9/15)

3.4.5 Barrier ...

255

d

#pragma omp for private(i,j) // add nowait, as the case may be
for (i=0; i<N; i++) {
for (j=0; j<i; j++) {
ali]l [j] = sqrt(i) * sin(j*j);
+
X

cout << "Thread " << thread << ": start loop 2\n";
#pragma omp for private(i,j)
for (i=0; i<N; i++) {
for (j=i; j<N; j++) {
alil [j1 = sqrt(i) * cos(j*j);
}
+
cout << "Thread " << thread << ": end loop 2\n";
}
+
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3.4.5 Barrier ... "

Example ...

= The first loop processes the lower triangle of the matrix a, the
second loop processes the upper triangle
= |oad imbalance between the threads
= barrier at the end of the loop results in waiting time

= But: the second loop does not depend on the first one

= |.e., the computation can be started, before the first loop has
been executed completely

= the barrier at the end of the first loop can be removed
= Option nowait
= run time with 2 threads only 4.8 s instead of 7.2 s
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3.4.5 Barrier ... '-'

Example ...

= Executions of the program:

Without nowait With nowait
Thread 1 Thread 2 Thread 1 Thread 2
| |
Loop 1 Loop 1
Loop 1 Loop 1
Loop 2
Loop 2 Loop 2
LOOp 2 I#
|
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3.4 OpenMP Synchronization ... ‘I

3.4.6 Execution using a single thread

##fpragma omp single #pragma omp master
Statement / Block Statement / Block

= Block is only executed by a single thread

= No synchronization at the beginning of the directive

= single directive:
= first arriving thread will execute the block
= barrier synchronization at the end (unless: nowait)

w master directive:
w master thread will execute the block
= no synchronization at the end
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Notes for slide 259:

Strictly speaking, the single directive is no Synchronization, but a directive for work
distribution. It distributes the work in such a way, that the block below the directive is
executed by the first thread arriving at the directive. Thus, the directive can be used to
implement task parallelism, e.g.:
#pragma omp parallel
{
#pragma omp single nowait
firstTask();
#pragma omp single nowait
secondTask() ;
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3.5 Task Parallelism with OpenMP d

3.5.1 The sections Directive: Parallel Code Regions

#pragma omp sections [<clause_list>]

#fpragma omp section

Statement / Block
#fpragma omp section

Statement / Block
y o

= Each section will be executed exactly once by one thread
= scheduling is implementation-defined (gcc: dynamic)

= At the end of the sections directive, a barrier synchronization is
performed
= unless the option nowait is specified
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3.5.1 The sections directive ... "

Example: independent code parts

double a[N], b[N];
int i;
#fpragma omp parallel sections private (i)

{

#fpragma omp section

for (i=0; i<N; i++)
a[i] = 100;

#fpragma omp section

for (i=0; i<N; i++)
b[i] = 200;

Important!!

}

= The two loops can be executed concurrently to each other

= Task partitioning
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3.5.1 The sections directive ... "

Example: scheduling / influence of nowait (= 03/sections.cpp)

void task(int no, int delay) {
int thread = omp_get_thread_num();
#pragma omp critical

cout << "Thread " << thread << ", Section " << no << " start\n";
usleep(delay) ;
#pragma omp critical
cout << "Thread " << thread << ", Section " << no << " end\n";
}
main() {
#pragma omp parallel
{
#pragma omp sections // ggf. nowait
{

#pragma omp section
task(1, 200000) ;
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3.5.1 The sections directive ...

Example: scheduling / influence of nowait ...

#pragma omp section
task(2, 1000000);

b

#pragma omp sections

{
#pragma omp section
task(3, 300000) ;
#pragma omp section
task(4, 200000);
#pragma omp section
task(5, 200000) ;

==+= Roland Wismdller i
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3.5.1 The sections directive ...

263

Example: scheduling / influence of nowait ...

w Executions of the program without nowait option:

Thread 1 Thread 2 Thread 1 Thread 2 Thread 3

Sect. 1 ‘ Sect. 2 \

I
‘ Sect. 2 ‘
| |

Barrier

Barrier

Sect. 4 Sect. 4

Sect. 5

Sect. 3

] Sect. 5

=== Roland Wismduiller i
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3.5.1 The sections directive ... "

Example: scheduling / influence of nowait ...

= Executions of the program with nowait option:

Thread 1 Thread 2 Thread 1 Thread 2 Thread 3

Sect. 1 Sect. 2 Sect. 1 Sect. 2
Sect. 3
Sect. 3 Sect. 4
| |
Sect. 4
Barrier
Sect. 5
I
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3.5 Task Parallelism with OpenMP ... "

3.5.2 The task Directive: Explicit Tasks

#pragma omp task|[<clause_list>]
Statement/Block

= Creates an explicit task from the statement / the block

= Tasks will be executed by the available threads (work pool model)

w Options private, firstprivate, shared determine, which
variables belong to the data environment of the task

w the default for local variables is firstprivate, i.e., local
variables declared outside but used inside the block are the
task’s input arguments

= Option if allows to determine, when an explicit task should be
created
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3.5.2 The task Directive ... d

Example: parallel quicksort (= 03/gsort.cpp)

void quicksort(int *a, int lo, int hi) {

// Variables are ‘firstprivate’ by default

#pragma omp task if (j-lo > 10000)
quicksort(a, lo, j);

quicksort(a, i, hi);

}
int main() {

#pragma omp parallel

#pragma omp single nowait  //Execution by a single thread
quicksort(array, 0, n-1);

// Before the parallel region ends, we wait for the termination of all threads
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Notes for slide 267:

In the task construct, global and static variables, as well es objects allocated on the
heap are shared by default. For global and static variables, this can be changed using
the threadprivate directive. Otherwise, all other variables used in the affected code
block are firstprivate by default, i.e., their value is copied when the task is created.
However, the shared attribute is inherited from the lexically enclosing constructs. For
example:
int glob;
void example() {
int a, b;
#pragma omp parallel shared(b) private(a)
{
int c;
#pragma omp task
{
int d;
// glob: shared
/I a: firstprivate
// b: shared
/I c: firstprivate
// d: private
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3.5.2 The task Directive ... d

Task synchronization

##fpragma omp taskwait #fpragma omp taskgroup

Block

= taskwait: waits for the completion of all direct subtasks of the
current task

= taskgroup: at the end of the block, the program waits for all tasks,
which have been created within the block by the current task or
one of its subtasks

= available since OpenMP 4.0
= caution: older compilers ignore this directive!
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3.5.2 The task Directive ... d

Example: parallel quicksort (= 03/gsort.cpp)

= |magine the following change when calling quicksort:
#pragma omp parallel

{
#pragma omp single nowait // Execution by exactly one thread
quicksort(array, 0, n-1);
checkSorted(array, n); // Verify that array is sorted
+
= Problem:

w quicksort () starts new tasks
= tasks are not yet finished, when quicksort () returns
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3.5.2 The task Directive ... d

Example: parallel quicksort ...

w Solution 1:
void quicksort(int *a, int lo, int hi) {

#pragma omp task if (j-lo > 10000)

quicksort(a, lo, j);

quicksort(a, i, hi);

#pragma omp taskwait  <— Wwait for the created task
}

= advantage: subtask finishes, before quicksort () returns

= necessary, when there are computations after the recursive
call

= disadvantage: relatively high overhead
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Notes for slide 270:

In this example, an additional overhead is created by always waiting for the subtasks
after the recursive calls, even if none were generated (because j-1lo <= 10000). For

the taskwait directive, there is no if option, so you might need to include a condi-
tional statement here.
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3.5.2 The task Directive ... d

Example: parallel quicksort ...

w Solution 2:

#pragma omp parallel

{
#pragma omp taskgroup

{

#pragma omp single nowait //Execution by exactly one thread
quicksort(array, 0, n-1);
+ +— wait for all tasks created in the block
checkSorted (array, n);

+

= advantage: only wait at one single place

= disadvantage: semantics of quicksort () must be very well
documented

===" Roland Wismdiller
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3.5.2 The task Directive ... d

Dependences between tasks (= 03/tasks.cpp)

= (Option depend allows to specify dependences between tasks

= you must specify the affected variables (or array sections, if
applicable) and the direction of data flow

= Beispiel:
#pragma omp task shared(a) depend(out: a)
a = computeA();
#pragma omp task shared(b) depend(out: b)

b = computeB(); 3\
#pragma omp task shared(a,b,c) depend(in: a,b)

c = computeCfromAandB(a, b); 50
#pragma omp task shared(b) depend(out: b) ::>5a

b = computeBagain();

w the variables a, b, and ¢ must be shared in this case, since
they contain the result of the computation of a task
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Notes for slide 272:

In the depend option, a dependency type is defined, which specifies the direction of the
data flow. Possible values are in, out, and inout.

= With in, the generated task will depend on all previously created “sibling” tasks
that specify at least one of the listed variables in a depend option of type out or
inout.

= With out and inout, the generated task will depend on all previously created
“sibling” tasks that specify at least one of the listed variables in a depend option of
type in, out, or inout.

Array sections can be specified using the notation:

<name> [ [<lower-bound>] : [<length>] ]
A missing lower bound is assumed to be 0, a missing length as the array length minus
lower bound.
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3.6 Tutorial: Tools for OpenMP n

3.6.1 Debugging

= There are only few debuggers that fully support OpenMP
= e.g., Totalview
= requires tight cooperation between compiler and debugger

= On Linux PCs:
= odb and ddd allow halfway reasonable debugging
= they support multiple threads
= odb: textual debugger (standard LINUX debugger)
= ddd: graphical front end for gdb
= more comfortable, but more “heavy-weight”
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3.6.1 Debugging ... ‘I

= Prerequisite: compilation with debugging information
= sequential: g++ -g -o myProg myProg.cpp
w with OpenMP: g++ -g -fopenmp ...
w | imited(!) debugging is also possible in combination with
optimization
= however, the debugger may show unexpected behavior
w if possible: switch off the optimization
= g++ -g -00 ...

=== Roland Wismduiller .
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 274

3.6.1 Debugging ... n

Important functions of a debugger (Examples for gdb):

w Start the programm: run argl arg?2

Set breakpoints on code lines: break file.cpp:35

Set breakpoints on functions: break myFunc

Show the procedure call stack: where

Navigate in the procedure call stack: up bzw. down
Show the contents of variables: print i

Change the contents of variables: set variable i=ix*15

Continue the program (after a breakpoint): continue

§ §F 5 5 5 7 13

Single-step execution: step bzw. next
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3.6.1 Debugging ... "

Important functions of a debugger (Examples for gdb): ...
w Show all threads: info threads

w Select a thread: thread 2
= subsequent commands typically only affect the selected thread

= Source code listing: list
= Help: help

w Exit the debugger: quit

= All commands can also be abbreviated in gdb
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3.6.1 Debugging ... n

Sample session with gdb (sequential)

bsclk01> g++ -g -00 -o ross ross.cpp < Option -g for debugging
bsclk01> gdb ./ross

GNU gdb 6.6

Copyright 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public ...
(gdb) b main < Set breakpoint on function main

Breakpoint 1 at 0x400400: file ross.cpp, line 289.

(gdb) run 5 5 0 < Start program with given arguments

Starting program: /home/wismueller/LEHRE/pv/ross 5 5 0
Breakpoint 1, main (argc=4, argv=0x7fff0a131488) at ross.cpp:289
289 if (argc !'= 4) {

(gdb) list < Listing around the current line

284
285 /*
286 ** Get and check the command line arguments
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3.6.1 Debugging ... ‘I

287 */

288

289 if (argec !'= 4) {

290 cerr << "Usage: ross <size_x> <size_y> ...
291 cerr << " <size_x> <size_y>: size...
292 cerr << " <all>: O = compute omne ...
293 cerr << " 1 = compute all ...

(gdb) b 315 < Set breakpoint on line 315
Breakpoint 2 at 0x400e59: file ross.cpp, line 315.
(gdb) ¢ <« Continue the program

Continuing.

Breakpoint 2, main (argc=4, argv=0x7fff0a131488) at ross.cpp:315
315 num_moves = Find_Route(size_x, size_y, moves);

(gdb) n < Execute next source line (here: 315)

320 if (num_moves >= 0) {

(gdb) p nummoves < Print contents of num moves

$1 = 24
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3.6.1 Debugging ... n

(gdb) where <— Where is the program currently stopped?

#0 main (argc=4, argv=0x7fff0a131488) at ross.cpp:320
(gdb) ¢ < Continue program

Continuing.

Solution:

Program exited normally.
(gdb) q < exitgdb
bsclk01>
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3.6.1 Debugging ... "

Sample session with gdb (OpenMP)

bslab03> g++ -fopenmp -00 -g -o heat heat.cpp solver-jacobi.cpp
bslab03> gdb ./heat
GNU gdb (GDB) SUSE (7.5.1-2.1.1)

(gdb) run 500

Program received signal SIGFPE, Arithmetic exception.
0x0000000000401711 in solver._omp_fn.0 () at solver-jacobi.cpp:58

58 bl[i]l [j] = 1/(i-100);

(gdb) info threads
Id Target Id Frame
4 Thread ... (LWP 6429) ... in ... at solver-jacobi.cpp:59
3 Thread ... (LWP 6428) ... in ... at solver-jacobi.cpp:59

2 Thread ... (LWP 6427) ... in ... at solver-jacobi.cpp:63
*x 1 Thread ... (LWP 6423) ... in ... at solver-jacobi.cpp:58
(gdb) q
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3.6.1 Debugging ... "

Sample session with ddd

File Edit Wiew Program Commands Status  Source  Data Help
. - AT - g}v ..v . » - - - - e
Breakpoint Cl'| NHALIMOVES | Lma;ulq. F§> Eg:k: Watch P’ﬁr nﬁé& {\r;} % Iao?a’u,e % Uﬁn
Al
rf 5
o num_maves = Find_Route(size =, size_y, moves): Ly OB X |
.. e g
A 1 Listing Run
4 Print the result. (commands via Interupt |
if (R = 03 f i epi
pr1'ntf("Sn]utinn:\n\n"}:“ght mouse button EM
Current Mest | st | ¢
position . 8 . Menu k5
Copyright @ 2001-2004 Free Software Foundation, Inc. e |
%mdg',? Enstththread_dh Tibrary "f1ibftls/Tibthread_db.so.1". @M
q reak ross.ci315 L Down || |
Breakpoint 1 at 0x3048h30: file ross.c, 1ine 315. ﬁ—ml 1
fgdb) run 55 0 Undo | Red |
Breakpoint 1, main farge=4, argy=0xbfedf1b4) at ross.c:315 i M
radb) next ————=
ﬁdh}zgrint AL_0Y s Input/Output
(odb) T (also input of gdb commands) |
2 e
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3.6 Tutorial: Tools for OpenMP ... ‘I

3.6.2 Performance Analysis

= Typically: instrumentation of the generated executable code
during/after the compilation
= insertion of code at important places in the program

= in order monitor relevant events
= e.g., at the beginning/end of parallel regions, barriers, ...

= during the execution, the events will be

= individually logged in a trace file (Spurdatei)
= or already summarized into a profile

w Evaluation is done after the program terminates
= c.f. Section 2.8.6

= Example: Scalasca

= see https://www.scalasca.org/scalasca/software
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Notes for slide 282:
If you want to use Scalasca, there are two possibilities:

= You can download an appliance for Oracle VirtualBox, which includes Linux, g++
compilers, OpenMP, MPI, Scalasca and Visual Studio Code with g++ plugins (see
https://moodle.uni-siegen.de/mod/url/view.php?id=884597).

= You can use the script, which is provided on the course’s web page (see
https://www.bs.informatik.uni-siegen.de/web/wismueller/v1/pv/
build-scalasca.sh) to download and build Scalasca on a Linux computer.
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3.6.2 Performance Analysis ... "

Performance analysis using Scalasca

= Compile the program:

= scalasca -instrument g++ —-fopenmp ... barrier.cpp
= EXxecute the program:

w scalasca —analyze ./barrrier

w stores data in a directory scorep_barrier_0x0_sum

= 0x0 indicates the number of threads (0 = default)
= directory must not yet exist; remove it, if necessary

= |nteractive analysis of the recorded data:

= scalasca -examine scorep_barrier_0x0O_sum

=TT Roland Wismdiller :
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3.6.2 Performance Analysis ... '-'

Performance analysis using Scalasca: Example from slide 255

File Display Plugins Help

Restore Setting + Save Settings

Absolute 2| |Absolute *| |Absolute =
Metric tree B calltree Flat view Bl system tree ]| BoxPlot
¥ [ 0.00 Time (sec) v [ 0.00 main ¥ [ - machine Linux
¥ @ 7.21 Execution | v [ 0.00 [Somp parallel @barrier.c:24 | ¥ 0 - node bspc02
> [J° MP ¥ [ 0.00 'Somp for @barrier.c:28 v [ - Process
O 0.00 Overhead 3 2.71 'Somp implicit barrier @barriern.c33 || | 0.00 Master thread
[ 8 0.00 Idle threads ¥ [ 0.00 'Somp for @barrier.c:36 0.11 OMP thread 1
49 Visits (occ) | 3 2.90 !Somp implicit barrier @barrier.c:41 || | = 0.22 OMPthread2 ||
» [ 0 Synchronizations (occ) | 0.00 'Somp implicit barrier @barrier.c43 = M 0.32 OMP thread 3

» [ 0 Communications (occ)

» [ 0Bytes transferred (bytes)

» [1 0 MPI file operations (occ) |

» [ 3.25 Computational imbalance (sec)
0.00 Minimum Inclusive Time (sec)
1.60 Maximum Inclusive Time (sec)

| [ 0.38 OMP thread 4
[d 0.50 OMP thread 5
= 0.62 OMP thread 6
O o750MPthread7 ||

: | All (8 elements) =
0.00 5.62 (43.78%) 12.83| (0.00 2.90 (51.69%) 5.62| (0.00 2.80

==T" Roland Wismdiller i
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3.6.2 Performance Analysis ... "

Performance analysis using Scalasca: Example from slide 255 ...

= |n the example, the waiting time at barriers in the first loop can be
reduced drastically by using the option nowait:

Absolute +| | Absolute + | | Absolute *
Metric tree = calltree Flat view E System tree E| BoxPlot
¥ [ 0.00 Time (sec) v O 0.00 main v ux ==
v 7.97 Execution [ v [l 0.00 !Somp parallel @barrier.c:24 [ ¥ [ - node bspc02
O 0.00 'Somp for @barrier.c:28 v O -Process
O 0.00 Overhead ¥ [J 0.00 'Somp for @barrier.c:36 B 0.03 Master thread
3 0.00 Idle threads 0.15 !Somp implicit barrier @barrier.c41 [H 0.03 OMP thread 1
41 Visits {occ) .00 !Somp implicit barrier @barrier.c:43 [E 0.03 OMPthread2 ||
» [ 0 Synchronizations (occ) | | = 0.02 OMP thread 3
» [ 0 Communications (occ) | E 0.02 OMP thread 4
B [ 0 Bytes transferred (bytes) E 0.01 OMP thread 5
» [ 0MPI file operations {occ) 0.00 OMP thread 6
» W 3.99 Computational imbalance (sec) 0.00 OMP thread7 |
0.00 Minimum Inclusive Time (sec)
1.02 Maximum Inclusive Time (sec) || —
_ : | All (& elements)
0.00 0.15 (1.84%) 8.12| |0.00 0.15 (99.73%) 0.15( |0.00 0.15
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Notes for slide 285:
When interpreting the times indicated by Scalasca, the following must be observed:

= The metric displayed for an entry (here: time) always excludes the visible sub-
entries. When, e.g., the item “7.97 Execution” in the Metric tree shown in the
screen dump is folded (i.e., no longer visible), Scalasca displays “8.12 Execution”
(0.15s execution time for OMP + 7.97s for the remaining execution).

In the example, you can see that the nowait option has made the time for OpenMP
(synchronization) significantly smaller (0.15s instead of 5.62s), but the pure exe-
cution time has slightly increased (from 7.21s to 7.97s), possibly because of com-
petition for the memory.

= The time that Scalasca displays is the summed execution time of all threads,
including waiting times. In the example, the program actually terminated after
1.3s.

= Scalasca still shows a load imbalance (Computational imbalance), since, e.g.,
thread 7 still calculates much more in the first loop than thread 1. Scalasca is not
able to recognize that this imbalance exactly cancels the corresponding imbalance
in the second loop.
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3.7 Exercise: A Solver for the Sokoban Game "

(Animated slide)

Background
w Sokoban: japanese for “warehouse keeper”
w Computer game, developed in 1982 by Hiroyuki Imabayashi

w Goal: player must push all objects (boxes) to the target positions
(storage locations)
= poxes can only be pushed, not pulled

= only one box can be pushed at a time

W R TRLE O ST T TP O hou RetTeo 40 X, SOOL 3% W

==+= Roland Wismdller ;
~== Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 286

3.7 Exercise: A Solver for the Sokoban Game ... "

(Animated slide)

How to find the sequence of moves?

w Configuration: state of the play field
= positions of the boxes
= position of the player (connected component)

w Each configuration has a set of
successor configurations

w Configurations with successor relation
build a directed graph

= not a tree, since cycles are possible!

w \Wanted: shortest path from the root of
the graph to the goal configuration

= |.e., smallest number of box
pushes
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3.7 Exercise: A Solver for the Sokoban Game ... "

How to find the sequence of moves? ...

= Two alternatives:
= depth first search = breadth first search

gl
A

{—
= problems: = problems:
= cycles = reconstruction of the
- handling paths with dif- path to a node
ferent lengths = memory requirements
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3.7 Exercise: A Solver for the Sokoban Game ... [I

Backtracking algorithm for depth first search:

DepthFirstSearch(conf): // conf = current configuration
append conf to the soultion path
if conf is a solution configuration:
found the solution path
return

if depth is larger than the depth of the best solution so far:
remove the last element from the solution path
return  // cancel the search in this branch
for all possible successor configurations ¢ of conf:
if ¢ has not yet been visited at a smaller or equal depth:
remember the new depth of ¢
DepthFirstSearch(c) // recursion
remove the last element from the solution path
return  // backtrack
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3.7 Exercise: A Solver for the Sokoban Game ... n

Algorithm for breadth first search:

BreadthFirstSearch(conf): // conf = start configuration
add conf to the queue at depth 0
depth = 1;
while the queue at depth depth-1 is not empty:
for all configurations conf in this queue:
for all possible successor configurations ¢ of conf:
if configuration ¢ has not been visited yet:
add the configuration ¢ with predecessor conf to the
set of visited configurations and to the queue for
depth depth
if c is a solution configuration:
determine the solution path to ¢
return  // found a solution
depth = depth+1
return  // no solution
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3.7 Exercise: A Solver for the Sokoban Game ... "

(Animated slide)

Example for the backtracking algorithm

Configuration with possible moves

<+ Possible move
<«— Chosen move

=== Roland Wismduiller .
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3 Parallel Programming with Shared Memory ... "

3.8 Excursion: Lock-Free Data Structures

w Goal: Data structures (typically collections) without mutual
exclusion
= more performant, no danger of deadlocks

w | ock-free: under any circumstances at least one of the threads
makes progress after a finite number of steps
= in addition, wait-free also prevents starvation

= Typical approach:
= use atomic read-modify-write instructions instead of locks

= in case of conflict, i.e., when there is a simultaneous change
by another thread, the affected operation is repeated
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3.8 Excursion: Lock-Free Data Structures ... "

Example: appending to an array (at the end)

int fetch_and_add(int *addr, int val) {
int tmp = *addr;
xaddr += val; Atomic!
return tmp,

}

Data buffer[N]; // Buffer array
int wrPos = 0; // Position of next element to be inserted

void add_last(Data data) {
int wrPos0ld = fetch_and_add(&wrPos, 1);
buffer [wrPos01ld] = data;

=== Roland Wismduiller .
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3.8 Excursion: Lock-Free Data Structures ... n

Example: prepend to a linked list (at the beginning)

bool compare_and_swap(void **addr, void *exp, void *newVal) -

if (*kaddr == exp) { )
*addr = newVal;
return true; s Atomic!
ks
return false; J
}
Element* firstNode = NULL,; // Pointer to first element

void add_first(Element* node) {
Element* tmp;
do {
tmp = firstNode;
node->next = tmp;
} while (!compare_and_swap(&firstNode, tmp, node));

+
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3.8 Excursion: Lock-Free Data Structures ... "

= Problems

= re-use of memory addresses can result in corrupt data
structures

= assumption in linked list: if firstNode is still unchanged,
the list was not accessed concurrently

= thus, we need special procedures for memory deallocation

= There is a number of libraries for C++ and also for Java
= C++: €.9., boost.lockfree, libcds, Concurrency Kit, liblfds
= Java: e.g., Amino Concurrent Building Blocks, Highly Scalable
Java
w Compilers usually offer read-modify-write operations, e.g.:
w C++ type: std: :atomic<T>
w ogcc/g++: built-in functions __sync_... () or __atomic_...(Q)
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4 Parallel Programming with Message Passing ...

d

Contents

= Typical approach

w MPI (Message Passing Interface)
MPI core routines

Simple MPI programs
Point-to-point communication
Tutorial: Working with MPI
Complex data types in messages
Communicators

Collective operations

Exercise: Jacobi and Gauss/Seidel with MPI

(LSS S S S S S

Further concepts
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Organisation ... ‘I

Evaluation
= You all have got an invitation link for the evaluation of this lecture

= Please fill the questionaire right now!
= only evaluate the lecture, the lab is evaluated separately

===" Roland Wismdiller . :
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4.1 Typical approach n
Data partitioning with SPMD model

Sequential program

and data partitioning

Parallelization @
(Sequential) node program

with message passing performs
computations for a part of

ParaIIeI execution the data
/ \\\g

|dentical copies of the
DI DI program, executed in
|:>1 parallel using multiple

\_/ processes
Communication
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4.1 Typical approach ... ‘I

Activities when creating a node program

= Adjustment of array declarations
= node program stores only a part of the data
= (assumption: data are stored in arrays)

= |ndex transformation
= global index <+ (process number, local index)

= Work partitioning
w each process executes the computations on its part of the data

w Communication

= when a process needs non-local data, a suitable message
exchange must be programmed
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4.1 Typical approach ... n

About communication

= \When a process needs data: the owner of the data must send
them explicitly
= exception: one-sided communication (= 4.11)

= Communication should be merged as much as possible
= one large message is better than many small ones
= however, data dependences must not be violated

Sequential execution Parallel execution

a[l] = ...; Process 1 Process 2

al . . a[l] = ...; recv(a[l],al2]);
a[3] = 11+...; a[2] = ..., /a[3] = a[l]+...;

a[4] = a[2]+...; send(a[l],al[2]); a[4] = a[2]+...;
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4.1 Typical approach ... "

About communication ...

= Often the node program allocates an overlapping buffer region
(ghost region / ghost cells) for non-local data

= Example: Jacobi iteration

Partitioning of the matrix into 4 parts

Each process allocates an
M additional row/column at the
L'.*:Iﬁ:.’.L--L--L__ borders of its sub—matrix

"""""""""""

2 3 Data exchange at the end of

: g ¢ each iteration
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4.2 MPI (Message Passing Interface) n

History and background

= At the beginning of the parallel computer era (late 1980’s):

= many different communication libraries (NX, PARMACS, PVM,
P4, ..)

w parallel programs are not easily portable

w Definition of an informal standard by the MPI forum

1994: MPI-1.0

1997: MPI-1.2 and MPI-2.0 (considerable extensions)
2009: MPI 2.2 (clarifications, minor extensions)

2012/15: MPI-3.0 und MPI-3.1 (considerable extensions)
documents at http://www.mpi-forum.org/docs

L2 2N SN 2 §

= MPI only defines the API (i.e., the programming interface)
= different implementations, e.g., MPICH2, OpenMPI, ...
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http://www.mpi-forum.org/docs

4.2 MPI (Message Passing Interface) ... ‘I

Programming model
= Distributed memory, processes with message passing

= SPMD: one program code for all processes
w put different program codes are also possible

= MPI-1: static process model
= all processes are created at program start
= program start is standardized since MPI-2
= MPI-2 also allows to create new processes at runtime
= MPI is thread safe: a process is allowed to create additional
threads
= hybrid parallelization using MP1 and OpenMP is possible

= Program terminates when all its processes have terminated
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4.3 MPI Core routines n

= MPI-1.2 has 129 routines (and MPI-2 even more ...)

= However, often only 6 routines are sufficient to write relevant
programs:

MPI_Init — MPI initialization

MPI_Finalize — MPI cleanup

MPI_Comm_size — get number of processes

MPI_Comm_rank — get own process number

MPI_Send — send a message

MPI_Recv — receive a message

F5F ¥5F 5 8
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4.3 MPI Core routines ... ‘I

MPL_Init

int MPI_Init (int *argc, char ***argv)

INOUT argc Pointer to arge of main ()
INOUT argv Pointer to argv of main ()
Result MPI_SUCCESS oOr error code

= Each MPI process must call MPI_Init, before it can use other
MPI routines

w Typically: int main(int argc, char **argv)
{
MPI_Init(&argc, &argv);

= MPI_Init may also ensure that all processes receive the
command line arguments
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4.3 MPI Core routines ... n

MPI_Finalize

int MPI_Finalize()

w Each MPI process must call MPI_Finalize at the end
= Main purpose: deallocation of resources

w After that, no other MPI routines must be used
w in particular, no further MPI_Init

= MPI_Finalize does not terminate the process!
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4.3 MPI Core routines ... ‘I

MPI_Comm_size

int MPI_Comm_size (MPI_Comm comm, int *size)

IN comm Communicator
OUT size Number of processes in comm

w Typically: MPI_Comm_size (MPI_COMM_WORLD, &nprocs)
w returns the number of MPI processes in nprocs

MPI_Comm_rank

int MPI_Comm_rank (MPI_Comm comm, int *rank)

IN comm Communicator
OUT rank Number of processes in comm

= Process number (“rank”) counts upward, starting at 0
= only differentiation of the processes in the SPMD model
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4.3 MPI Core routines ... "

Communicators

= A communicator consists of
= 3 process group
= a subset of all processes of the parallel application
= a communication context
= {0 allow the separation of different communication relations
(= 4.7)
= There is a predefined communicator MPI_COMM_WORLD
= jts process group contains all processes of the parallel
application

= Additional communicators can be created as needed (= 4.7)
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4.3 MPI Core routines ... "

MPI_Send

int MPI_Send(void *buf, int count, MPI_Datatype dtype,
int dest, int tag, MPI_Comm comm)

IN buf (Pointer to) the data to be sent (send buffer)

IN  count Number of data elements (of type dtype)

IN dtype Data type of the individual data elements

IN dest Rank of destination process in communicator comm
IN tag Message tag

IN comm Communicator

w Specification of data type: for format conversions
w Destination process is always relative to a communicator

w Jag allows to distinguish different messages (or message types)
in the program
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4.3 MPI Core routines ... "
MPI_Send ...

w MPI_Send blocks the calling process, until all data has been read
from the send buffer

= send buffer can be reused (i.e., modified) immediately after
MPI_Send returns
= The MPI implementation decides whether the process is blocked
until
a) the data has been copied to a system buffer, or
b) the data has been received by the destination process.

= N some cases, this decision can influence the correctness of
the program! (= slide 323)
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4.3 MPI Core routines ... "

MPI_Recv

int MPI_Recv (void *buf, int count, MPI_Datatype dtype,
int source, int tag, MPI_Comm comm,
MPI_Status *status)

OUT buf (Pointer to) receive buffer

IN  count Buffer size (number of data elements of type dtype)
IN dtype Data type of the individual data elements

IN  source Rank of source process in communicator comm

IN tag Message tag

IN  comm Communicator

OUT status Status (among others: actual message length)

w Process is blocked until the message has been completely
received and stored in the receive buffer
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4.3 MPI Core routines ... "

MPI_Recv ...

= MPI_Recv only receives a message where
= sender,
= message tag, and
= communicator
match the parameters
= For source process (sender) and message tag, wild-cards can be
used:
= MPI_ANY_SOURCE: sender doesn’t matter
= MPI_ANY_TAG: message tag doesn’t matter
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4.3 MPI Core routines ... ‘I

MPI_Recv ...

= Message must not be larger than the receive buffer
= put it may be smaller; the unused part of the buffer remains
unchanged
= From the return value status you can determine:
= the sender of the message: status.MPI_SOURCE
= the message tag: status.MPI_TAG
= the error code: status.MPI_ERROR

= the actual length of the received message (number of data
elements): MPI_Get_count (&status, dtype, &count)
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4.3 MPI Core routines ... "

Simple data types (MPI_Datatype)

MPI C/C++ MPI C/C++
MPI_CHAR  char MPI_UNSIGNED_CHAR unsigned char
MPI_SHORT short MPI_UNSIGNED_SHORT unsigned short
MPI_INT int MPI_UNSIGNED unsigned int
MPI_LONG long MPI_UNSIGNED_LONG wunsigned long
MPI_FLOAT float

MPI_DOUBLE double MPI_LONG_DOUBLE long double
MPI_BYTE  Byte with 8 bits || MPI_PACKED Packed data*

“1z 4,10
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4.4 Simple MPI programs

d

Example: typical MPI program skeleton (= 04/rahmen. cpp)

#include <iostream>

#include <mpi.h>
using namespace std;

int main (int argc, char **argv)

{

int 1i;

int myrank, nprocs;

int namelen;

char name [MPI_MAX_PROCESSOR_NAME] ;

/* Initialize MPI and set the command line arguments */
MPI_Init (&argc, &argv);

/x Determine the number of processes x/
MPI_Comm_size (MPI_COMM_WORLD, &nprocs);

=== Roland Wismduiller :
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4.4 Simple MPI programs ...

315

/* Determine the own rank =/
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;

/x Determine the node name */
MPI_Get_processor_name (name, &namelen);

/x flush is used to enforce immediate output =/

cout << "Process " << myrank << "/" << nprocs
<< "started on " << name << "\n" << flush;

cout << "-- Arguments: ";
for (i = 0; i<argc; i++)
cout << argv[i] << " ";

cout << "\n";

/* finish MPI «/
MPI_Finalize();

return O;
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4.4 Simple MPI programs ...

d

Starting MPI programs: mpiexec

= mpiexec -n 3 myProg argl arg2

w starts myProg argl arg2 with 3 processes

= the specification of the nodes to be used depends on the MPI

implementation and the hardware/OS plattform

= Starting the example program using MPICH:

mpiexec -n 3 -machinefile machines ./rahmen al a2

= Qutput:

Process 0/3 started on bslab02.lab.bvs

Args: /home/wismueller/LEHRE/pv/CODE/04/rahmen al a2

Process 2/3 started on bslab03.lab.bvs

Args: /home/wismueller/LEHRE/pv/CODE/04/rahmen al a2

Process 1/3 started on bslab06.lab.bvs

Args: /home/wismueller/LEHRE/pv/CODE/04/rahmen al a2
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4.4 Simple MPI programs ...

317

d

Example: ping pong with messages (= 04/pingpong. cpp)

int main (int argc, char **argv)

{

int i, passes, size, myrank;
char *buf;

MPI_Status status;

double start, end;

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

passes = atoi(argv[1]); //Number of repetitions
size = atoi(argv[2]);  // Message length
buf = new char[size];

=" Roland Wismdiller
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4.4 Simple MPI programs ... ‘I

if (myrank == 0) { /% Proccess 0 x/
start = MPI_Wtime(); // Getthe currenttime

for (i=0; i<passes; i++) {
/x Send a message to process 1, tag = 42 %/
MPI_Send(buf, size, MPI_CHAR, 1, 42, MPI_COMM_WORLD);

/x Wait for the answer, tag is not relevant =/
MPI_Recv(buf, size, MPI_CHAR, 1, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);
+

end = MPI_Wtime(); // Getthe currenttime

cout << "Time for one message: "

<< ((end - start) * 1e6 / (2 * passes)) << "us\n";
cout << "Bandwidth: "

<< (sizex2*passes/(1024*%x1024*(end-start))) << "MB/s'

=== Roland Wismduiller .
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4.4 Simple MPI programs ... n

else { /«Process 1 %/

for (i=0; i<passes; i++) {
/x Wait for the message from process 0, tag is not relevant */
MPI_Recv(buf, size, MPI_CHAR, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

/x Send back the answer to process 0, tag = 24 /
MPI_Send(buf, size, MPI_CHAR, 0, 24, MPI_COMM_WORLD);
+
}

MPI_Finalize();
return O;

=== Roland Wismduiller i
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4.4 Simple MPI programs ... ‘I

Example: ping pong with messages ...

= Results (on the XEON cluster):

= mpiexec -n 2 ... ./pingpong 1000 1
Time for one message: 50.094485 us
Bandwidth: 0.019038 MB/s

= mpiexec -n 2 ... ./pingpong 1000 100
Time for one message: 50.076485 us
Bandwidth: 1.904435 MB/s

= mpiexec -n 2 ... ./pingpong 100 1000000
Time for one message: 9018.934965 us
Bandwidth: 105.741345 MB/s

= (Only) with large messages the bandwidth of the interconnection
network is reached

w XEON cluster: 1 GBit/s Ethernet (= 119.2 MB/s)
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4.4 Simple MPI programs ... n

Additional MPI routines in the examples:

int MPI_Get_processor_name (char *name, int *len)

OUT name Pointer to buffer for node name
OUT 1len Length of the node name
Result MPI__SUCCESS or error code

= The buffer for node name should have the length
MPI_MAX_PROCESSOR_NAME

double MPI_Wtime ()

Result Current wall clock time in seconds

= for timing measurements

= in MPICH2: time is synchronized between the nodes
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4.5 Point-to-point communication "

Example: sending in a closed cycle (= 04/ring.cpp)

int al[N];

MPI_Send(a, N, MPI_INT, (myrank+1l) % nprocs, :7<:>\\\

0, MPI_COMM_WORLD);
MPI_Recv(a, N, MPI_INT, <:>

(myrank+nprocs-1) % nprocs, N\ :
0, MPI_COMM_WORLD, &status);
w Each process first attempts to send, before it receives

= This works only if MPI buffers the messages

= But MPI_Send can also block until the message is received
= deadlock!

=== Roland Wismduiller .
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4.5 Point-to-point communication ... n

Example: sending in a closed cycle (correct)

= Some processes must first receive, before they send
int a[N];

if (myrank % 2 == 0) A
MPI_Send(a, N, MPI_INT, (myrank+1)’nprocs,
MPI_Recv(a, N, MPI_INT, (myrank+nprocs-1)’nprocs,

}

else {
MPI_Recv(a, N, MPI_INT, (myrank+nprocs-1)’nprocs,
MPI_Send(a, N, MPI_INT, (myrank+1)’nprocs,

}

= Better: use non-blocking operations

==T" Roland Wismdiller :
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4.5 Point-to-point communication ... ‘I

Non-blocking communication

w MPI_Isend and MPI_Irecv return immediately
= pefore the message actually has been sent / received
= result: request object (MPI_Request)

w send / receive buffer must bot be modified / used, until the
communication is completed

!

MPI_Test checks whether communication is completed

= MPI_Wait blocks, until communication is completed

‘

Allows to overlap communication and computation

= can be “mixed” with blocking communication
= e.g., send usgin MPI_Send, receive using MPI_Irecv
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4.5 Point-to-point communication ... n

Example: sending in a closed cycle with MPI_Irecv
(= 04/ring?2. cpp)

int sbuf [N];

int rbuf [N];
MPI_Status status;
MPI_Request request;

// Set up the receive request
MPI_Irecv(rbuf, N, MPI_INT, (myrank+nprocs-1) 7% nprocs, O,
MPI_COMM_WORLD, &request);
// Sending
MPI_Send(sbuf, N, MPI_INT, (myrank+1l) % nprocs, O,
MPI_COMM_WORLD) ;

// Wait for the message being received
MPI_Wait (&request, &status);
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Notes for slide 326:

MPI offers many different variants for point-to-point communiction:

-

For sending, there are four modes:

= synchronous: send operation blocks, until message is received

= rendez-vous between sender and receiver

= buffered: message will be buffered by the sender
= application must allocate and register the buffer

= ready: the programmer must guarantee that the receiver process already
waits for the message (allows optimized sending)

= standard: MPI decides whether synchronous or buffered

= in this case, MPI provides the buffer itself

In addition: sending can be blocking or non-blocking

For receiving of messages: only blocking and non-blocking variant

The following table summarizes all routines:

synchronous asynchronous
synchronous MPI_Ssend() MPI_Issend()
> buffered MPI_Bsend() MPI_Ibsend()
'_g ______________________________________
3 ready MPI_Rsend () MPI_Irsend()
standard MPI_Send() MPI_Isend()
Receiving MPI_Recv () MPI_Irecv ()

326-1
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= |n addition, MPI also has a routine MPI_Sendrecv, which allows to send and re-
ceive at the same time, without the possibility of a deadlock. Using this function,
the example from (= 04/ringl.cpp) looks like:

int sbuf[N];
int rbuf[N];
MPI_Status status;

MPI_Sendrecv(sbuf, N, MPI_INT, (myrank+1) % nprocs, O,
rbuf, N, MPI_INT, (myrank+nprocs-1) % nprocs, O,
MPI_COMM_WORLD, &status);

= When using MPI_Sendrecv, send and receive buffer must be different, when using
MPI_Sendrecv_replace the send buffer is overwritten with the received message.

326-3

4.6 Tutorial: Working with MPI (MPICH2/OpenMPI) n

Available MPI implementations
= ¢e.g., MPICH2 (Linux), OpenMPI 1.10.3

= Portable implementations of the MPI-2 standard

Compiling MPI programs: mpic++
= mpic++ —-o myProg myProg.cpp

= Not a separate compiler for MPI, but just a script that defines
additional compiler options:

= include und linker paths, MPI libraries, ...
= option -show shows the invocations of the compiler

=7" Roland Wismliller .
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4.6 Tutorial: Working with MPI (MPICH2/OpenMPI) ... ‘I

Running MPI programs: mpiexec

= mpiexec -n 3 myProg argl arg2
w starts myProg argl arg2 with 3 processes
= myProg must be on the command search path or must be
specified with (absolute or relative) path name
= On which nodes do the processes start?
= depends on the implementation and the platform

= in MPICH2 (with Hydra process manager): specification is
possible via a configuration file:
mpiexec -n 3 -machinefile machines myProg argl arg2

= configuration file contains a list of node names, e.g.:

bslabO1 < start one process on bslab03
bslab05:2 < stari two processes on bslab05
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4.6 Tutorial: Working with MPI (MPICH2/OpenMPI) ... |]

Debugging
= MPICH2 and OpenMPI support gdb and totalview
w Using gdb:
= mpiexec -enable-x -n ... xterm -e gdb myProg

= instead of xterm, you may (have to) use other console
programs, e.g., konsole Or mate-terminal

w for each process, a gdb starts in its own console window
= in gdb, start the process with run args. ..

w Prerequisite: compilation with debugging information
= mpic++ -g —-o myProg myProg.cpp
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4.6 Tutorial: Working with MPI (MPICH2/OpenMPI) ... (I

Performance Analysis using Scalasca
= |n principle, in the same way as for OpenMP
= Compiling the program:
= scalasca -instrument mpic++ -0 myprog myprog.cpp
= Running the programms:
w scalasca —analyze mpiexec -n 4 ... ./myprog

= creates a directory scorep myprog_4_sum

= 4 jndicates the number of processes
= directory must not previously exist; delete it, if necessary

= |nteractive analysis of the recorded data:

= scalasca —-examine scorep_myprog-4_sum
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4.7 Communicators [I

(Animated slide)

Motivation: problem of earlier communication libraries

Process 0 Process 1 Process 2

* : Code in a parallel
send(1) (e.g. numerical) library
™~ recv(*)
y | If process 2 is ‘late’ for
1 ' ’
send(1)—__ recv(*) ,senvd(1) some reason:
v l i ‘ communication fails!

= Message tags are not a reliable solution
= tags might be chosen identically by chance!

= Required: different communication contexts

=== Roland Wismduiller :
—== Betriebssysteme / verteilte Systeme Parallel Processing (13/15) 331

4.7 Communicators ... n

= Communicator = process group + context

w Communicators support
= working with process groups
= task parallelism

= coupled simulations
= collective communication with a subset of all processes

= communication contexts
= for parallel libraries
= A communicator represents a communication domain
= communication is possible only within the same domain
= no wild-card for communicator in MPI_Recv
= g process can belong to several domains at the same time
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4.7 Communicators ... [I

Creating new communicators

int MPI_Comm_dup (MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_split (MPI_Comm comm, int color
int key, MPI_Comm *newcomm)

= Collective operations (= 4.8)
w all processes in comm must execute them concurrently

= MPI_Comm_dup creates a copy with a new context

w MPI Comm _split splits comm into several communicators
w one communicator for each value of color

= as the result, each process receives the communicator to
which it was assigned

w key determines the order of the new process ranks
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4.7 Communicators ... "

Example for MPI_Comm_split

w  Multi-physics code: air pollution
= one half of the processes computes the airflow
= the other half computes chemical reactions

w Creation of two communicators for the two parts:
MPI_Comm_split(MPI_COMM_WORLD, myrank’2, myrank, &comm)

Process | myrank | Color Riiﬂ; n iEa(gE i'?]aglz
PO 0 0 Co 0 —
P1 1 1 C: ~ | o
P2 2 0 Co 1 —
P3 3 1 (O] — 1
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4.8 Collective operations ['

= Collective operations in MPI

= must be executed concurrently by all processes of a process
group (a communicator)

= are blocking
= do not neccessarily result in a global (barrier) synchronisation,
however

= Collective synchronisation and communication functions
= barriers
= reductions (communication with aggregation)
w global communication: broadcast, scatter, gather, ...
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Notes for slide 335:

Note that “concurrently” (German: "nebenlaufig”) does not mean that the operations
must be executed at the same time, or in an overlapping way. It just means that (1) all
processes in the communicator execute the operation and (2) there is no synchoniza-
tion that enforces any restriction on the ordering of the operations. (In other words: it
must be possible that the operations can be executed at the same time, but this is not
required)
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4.8 Collective operations ... ‘I

MPI_Barrier

int MPI_Barrier (MPI_Comm comm)
w Barrier synchonization of all processes in comm

= With message passing, barriers are actually not really necessary
= synchonization is achieved by message exchange

= Reasons for barriers:
= more easy understanding of the program
= timing measurements, debugging output
= console input/output ??
= MPI-2: MPI I/O, one-sided communication
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4.8 Collective operations ... "

Reduction: MPI_Reduce

int MPI_Reduce (void *sendbuf, void *recvbuf,
int count, MPI_Datatype dtype,
MPI_Op op, int root,
MPI_Comm comm)

= Each element in the receive buffer is the result of a reduction
operation (e.g., the sum) of the corresponding elements in the
send buffer

= op defines the operation

w predefined: minimum, maximum, sum, product, AND, OR,
XOR, ...

= in addition, user defined operations are possible, too
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4.8 Collective operations ...

Example: summing up an array

Sequential
s = 0;

for (i=0;i<size;i++)

s += a[i];

Parallel

local_s = 0;

for (i=0;i<local_size;i++)
local_s += al[i];

MPI_Reduce (&local_s, &s,
1, MPI_INT,
MPI_SUM,
0, MPI_COMM_WORLD) ;

=TT Roland Wismdiller .
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4.8 Collective operations ...

338

Collective communication: broadcast

PO PO

buf:{0]1]2]|3 buf:l0[1]2
P P

but: Broadcast buf:|0]1]2
P2 P2

buf: buf:] 0| 1] 2
P3 P3

buf: buf:]0]1[2

ET=2TT Roland Wismidiller
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4.8 Collective operations ... "

MPI_Bcast

int MPI_Bcast (void *buf, int count, MPI_Datatype dtype,
int root, MPI_Comm comm)

IN root Rank of the sending process

w Buffer is sent by process root and reveived by all others
= Collective, blocking operation: no tag necessary

= count, dtype, root, comm must be the same in all processes
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4.8 Collective operations ... '-'

Collective communication: scatter

PO PO

rouf: [T ] rbuf:
P1 rouf: [T ] P1 rbuf:
sbuf: [0]1]2]3T4]5][6]7] Scatter sbuf: [0J1]2]3T4[5]6]7]
P2 P2

rouf: |:|:| rbuf:
P3 P3

rouf: [T ] rbuf:
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4.8 Collective operations ... ‘I

MPI_Scatter

int MPI_Scatter (void *sendbuf, int sendcount,
MPI_Datatype sendtype,
void *recvbuf, int recvcount,
MPI_Datatype recvtype,
int root, MPI_Comm comm)

= Process root sends a part of the data to each process
= including itself
= sendcount: data length for each process (not the total length!)

= Process i receives sendcount elements of sendbuf starting from
position i * sendcount

w Alternative MPI_Scatterv: length and position can be specified
individually for each receiver
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Notes for slide 342:

= A problem that may arise when using MPI_Scatter is that the the data cannot be
distributed evenly, e.g., if an array with 1000 elements should be distributed to 16
processes.

= |n MPI_Scatterv, the argument sendcount is replaced by two arrays sendcounts
and displacements

= process i then receives sendcounts[i] elements of sendbuf, starting at
position displacements[i]
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4.8 Collective operations ... "

Collective communication: gather

PO
sbuf: sbuf:
P1 sbuf: P1 sbuf:
ouft: [ | [ [ [T [ ]] Gather rouf: [0[1]2]3[4[5[6]7]
P2 P2
sbuf: sbuf:
P3
sbuf: sbuf:
.... 3 Egtlﬁggs\/sv}igg%lg " verteilte Systeme Parallel Processing (13/15) 343
4.8 Collective operations ... '-'
MPI_Gather

int MPI_Gather (void *sendbuf, int sendcount,
MPI_Datatype sendtype,
void *recvbuf, int recvcount,
MPI_Datatype recvtype,
int root, MPI_Comm comm)

= All processes send sendcount elements to process root
= even root itself
= |mportant: each process must sent the same amount of data

= root stores the data from process i starting at position i *
recvcount in recvbuf

= recvcount: data length for each process (not the total length!)
= Alternative MPI_Gatherv: analogous to MPI_Scatterv
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4.8 Collective operations ... ‘I

Example: multiplication of vector and scalar (== 04/vecmult.cpp)

double al[N], factor, local_a[LOCAL_N];

// Process 0 reads a and factor from file

MPI_Bcast(&factor, 1, MPI_DOUBLE, O, MPI_COMM_WORLD) ;
MPI_Scatter(a, LOCAL_N, MPI_DOUBLE, local_a, LOCAL_N,
MPI_DOUBLE, 0O, MPI_COMM_WORLD) ;
for (i=0; i<LOCAL_N; i++)
local_al[i] *= factor;
MPI_Gather(local_a, LOCAL_N, MPI_DOUBLE, a, LOCAL_N,
MPI_DOUBLE, O, MPI_COMM_WORLD) ;

. // Process 0 writes a into file

= Caution: LOCAL_N must have the same value in all processes!

w otherwise: use MPI_Scatterv / MPI_Gatherv
(1= 04/vecmult3. cpp)
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4.8 Collective operations ... n

More collective communication operations
w MPI_Alltoall: all-to-all broadcast (= 2.8.5)

w MPI_Allgather and MPI_Allgatherv: at the end, all processes
have the gathered data

= corresponds to a gather with subsequent broadcast

w MPI_Allreduce: at the end, all processes have the result of the
reduction

= corresponds to a reduce with subsequent broadcast

= MPI_Scan: prefix reduction

= e.g., using the sum: process ¢ receives the sum of the data
from processes 0 up to and including <
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4.9 Exercise: Jacobi and Gauss/Seidel with MPI "

(Animated slide)

Gerneral approach

Ty 0. Matrix with temperature values
s 1. Distribute the matrix into stripes
@ _____________________________ @ Each process only stores a part of
----------------------------- 7 the matrix
it RS
P . 2. Introduce ghost zones
O ©) Each process stores an additional
::::::::E::::::f row at the cutting edges
s 3. After each iteration the ghost zones
O (@  are exchanged with the neighbor
_____________________________ = processes
::::::::::::::::_9’:::::::::::::: E.g., first downwards (1),
then upwards (2)
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4.9 Exercise: Jacobi and Gauss/Seidel with MPI ... n

Gerneral approach ...

int nprocs, myrank;
double a[LINES] [COLS];
MPI_Status status;

MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;

// Step 1: Send downwards, recieve from above
if (myrank != nprocs-1)
MPI_Send(a[LINES-2], COLS, MPI_DOUBLE, myrank+1, O,
MPI_COMM_WORLD) ;
if (myrank != 0)
MPI_Recv(a[0O], COLS, MPI_DOUBLE, myrank-1, O,
MPI_COMM_WORLD, &status);
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4.9 Exercise: Jacobi and Gauss/Seidel with MPI ... [I

Distribution of data

= For a uniform distribution of an array of length n to np processes:
= size(p) = (n +p) +np

- start(p) = Y.P_, size(q)
=n-<+np-:p+ max(p — (np — n mod np),0)

= process p receives size(p) elements starting at index start(p)

w This results in the following index transformation:

= tolocal(z) = (p, ¢ — start(p))
with p € [0, np — 1] such that 0 < ¢ — start(p) < size(p)

= toglobal(p, i) = i + start(p)

= |n addition, you have to consider the ghost zones for Jacobi and
Gauss/Seidel!
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Notes for slide 349:

As a motivation for the formula size(p) = (n + p) <+ np, consider the simple example
of n = 7 and np = 4:

7+4=1

7+pzd=1[2]2]2

Processes 0 - 2
each get one
element, process 3
gets the rest.

Process 0 gets one
element, processes
1 -3 gettwo
elements each.

SQoRhw®Nh 2O
Qo hwn O

When nprocs contains the number of processes and myrank is the rank of the MPI
process, the following code will compute the start row (start) and the number of rows
(size) for the current process:
size = (n + myrank) / nprocs;
start = n / nprocs * myrank;
if (myrank > nprocs - n % nprocs)
start += myrank - (nprocs - n % nprocs);

Note that after this computation, you will have to modify these numbers a little, since
you also have to account for the ghost rows.
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4.9 Exercise: Jacobi and Gauss/Seidel with MPI ... [I

Distribution of computation

= |n general, using the owner computes rule

= the process that writes a data element also performs the
corresponding calculations

= Two approaches for technically realizing this:

= ndex transformation and conditional execution
= e.g., when printing the verification values of the matrix:
if ((x-start >= 0) && (x-start < size))
cout << "a[" << x << "]=" << a[x-start] << "\n";

= adjustment of the bounds of the enclosing loops

= e.g., during the iteration or when initializing the matrix:
for (i=0; i<size; i++)
ali] = 0;
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Notes for slide 350:

For the initialization of the border values it is the easiest method to use conditional
execution. So the original loop
for (i=0; i<mn; i++) {
double x = (double)i / (n-1);

al[i] [0] = X;
a[n-1-i] [n-1] = x;
alo] [i] = x;
a[n-1] [n-1-i] = x;
}
becomes

for (i=0; i<mn; i++) {

double x = (double)i / (n-1);

if ((i-start >= 0) && (i-start < size))
ali-start] [0] = X;

if ((n-1-i-start >= 0) && (n-1-i-start < size))
a[n-1-i-start] [n-1] = x;

if ((0O-start >= 0) && (O-start < size))
a[0-start] [i] = X;

if ((n-1-start >= 0) && (n-1-start < size))
a[n-1-start] [n-1-i] = x;
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4.9 Exercise: Jacobi and Gauss/Seidel with MPI ...

On the parallelization of the Gauss/Seidel method

= Similar to the pipelined parallelization with OpenMP (= 3.3)

PO i HiHinHian s Send directly after St L0
\ the calculation (1': ——————————————— Y
Pl —— i HinnHeornHuenng D 1Y
[SEN SN
P2 ||||||—|JJJJJ§||||| K <; _:>
P3 |||||k|||||k||||f}|||||k>
lteration of lteration of Receive just before
the ’k’ loop the ’i’ loop the last i’ iteration
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4.9 Exercise: Jacobi and Gauss/Seidel with MPI ...

351

d

(Animated slide)

Obtained speedup for different matrix sizes

16
ideal
14

12

Speedup

Processors

o D O~ OO 00 O

Jacobi 8000
Jacobi 4000
Jacobi 2000
Jacobi 1000

b Jacobi 500

Lab PCs
bslab01-08

2 4 6 8 10 12 14

bslab15-19
16 Dbslab09-11

=" Roland Wismdiller
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4.10 Complex data types in messages ‘I

w So far: only arrays can be send as messages

= \What about complex data types (e.g., structures)?
w 7.B. struct bsp { int a; double b[3]; char c; };

= MPI offers two mechanisms
= packing and unpacking the individual components

= use MPI_Pack to pack components into a buffer one after
another; send as MPI_PACKED; extract the components
again using MPI_Unpack

= derived data types

= MPI_Send gets a pointer to the data structure as well as a
description of the data type

= the description of the data type must be created by calling
MPI routines

=== Roland Wismduiller :
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Notes for slide 353:
Example for packing and unpacking using MPI_Pack and MPI_Unpack:

/I C structure (or likewise C++ object), which should be sent
struct bsp { int a; double b[3]; char c; } str;

char buf[100]; /I buffer, must be parge enough!!
int pos; // position in the buffer

pos = 0;

MPI_Pack(&str.a, 1, MPI_INT, buf, 100, &pos, MPI_COMM_WORLD) ;
MPI_Pack(&str.b, 3, MPI_DOUBLE, buf, 100, &pos, MPI_COMM_WORLD) ;
MPI_Pack(&str.c, 1, MPI_CHAR, buf, 100, &pos, MPI_COMM_WORLD) ;
MPI_Send(buf, pos, MPI_PACKED, 1, 0, MPI_COMM_WORLD);

MPI_Recv(buf, 100, MPI_PACKED, 1, O, MPI_COMM_WORLD, &status);
pos = 0;

MPI_Unpack(buf, 100, &pos, &str.a, 1, MPI_INT, MPI_COMM_WORLD) ;
MPI_Unpack(buf, 100, &pos, &str.b, 3, MPI_DOUBLE, MPI_COMM_WORLD) ;
MPI_Unpack(buf, 100, &pos, &str.c, 1, MPI_CHAR, MPI_COMM_WORLD) ;
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The MPI standard requires that a message always must be packed as shown in suc-
cessive calls to MPI_Pack (pack unit), where buffer, buffer length and communicator are
identical.

In this way, the standard allows that an implementation also packs a header into the
message (e.g., for an architecture tag). For this, information from the communicator
may be used, if required.

353-2

410 Complex data types in messages ... n

Derived data types
= MPI offers constructors, which can be used to define own
(derived) data types:
w for contiguous data: MPI_Type_contiguous
= allows the definition of array types
= for non-contiguous, strided data: MPI _Type_vector
= e.g., for a column of a matrix or a sub-matrix
w for other non-contiguous data: MPI_Type_indexed
w for structures: MPI _Type_create_struct

= After a new data type has been created, it must be “announced”:
MPI_Type_commit

= After that, the data type can be used like a predefined data type
(e.g., MPLLINT)

=== Roland Wismduiller i
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4.10 Complex data types in messages ... [I

MPI_Type_vector: hon-contiguous arrays

int MPI_Type_vector (int count, int blocklen, int stride,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

IN count Number of data blocks

IN blocklen Length of the individual data blocks

IN stride Distance between successive data blocks
IN oldtype Type of the elements in the data blocks

OUT newtype Newly created data type

= Summarizes a number of data blocks (described as arrays) into a
new data type

= However, the result is more like a new view onto the existing data
than a new data type

=== Roland Wismduiller .
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410 Complex data types in messages ... "

Example: transferring a column of a matrix

Matrix: a[N] [M] Memory layout of the matrix:
stride = M blocklen = 1
Z - e <+
Il
-
(@)
(@)
Send buffer:

This column should be sent

MPI_type_vector (N, 1, M, MPI_INT, &column);
MPI_Type_commit (&column) ;

// Transfer the column

if (rank==0) MPI_Send(&a[0][4], 1, column, 1, O, comm);
else MPI_Recv(&al[0O][4], 1, column, O, O, comm, &status);

=== Roland Wismduiller i
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Notes for slide 356:
Additional options of MPI_Type_vector

Every second One Every second One
element of a FOW element of a sub-
column row matrix
N
-
M
count N/2 1 M M/2 2
blocklen 1 M 1 1 3
stride 2*M X 1 2 M

4.10 Complex data types in messages ...

356-1

d

Remarks on MPI_Type_vector

= The receiver can use a different data type than the sender

= |t is only required that the number of elements and the sequence

of their types is the same in the send and receive operations

= Thus, e.g., the following is possible:
w sender transmits a column of a matrix

= reciever stores it in a one-dimensional array

int a[N][M], b[N];

MPI_type_vector (N, 1, M, MPI_INT, &column);

MPI_Type_commit (&column) ;

if (rank==0) MPI_Send(&al[0][4], 1, column, 1, O, comm);

else MPI_Recv(b, N, MPI_INT, O, O, comm, &status);
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Notes for slide 357:

Strided arrays that have been created using MPI_Type_vector can usually transmit-
ted as efficient as contiguous arrays (i.e., with stride 1) with modern network interface
cards. These cards support the transmission of non-contiguous memory areas in hard-
ware.

357-1

410 Complex data types in messages ... n

How to select the best approach

= Homogeneous data (elements of the same type):
w contiguous (stride 1): standard data type and count parameter
= non-contiguous:

= stride is constant: MPI _Type_vector
= stride is irregular: MPI_Type_indexed

= Heterogeneous data (elements of different types):
= |arge data, often transmitted: MPI_Type_create_struct
= few data, rarely transmitted: MPI_Pack / MPI_Unpack
w structures of variable length: MPI Pack / MPI Unpack
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4.11 Further concepts n

= Topologies

= the application’s communication structure is stored in a
communicator

= e.g., cartesian grid
= allows to simplify and optimize the communication
= e,0,. “send to the left neighbor”
= the communicating processes can be placed on
neighboring nodes
= Dynamic process creation (since MPI-2)
= new processes can be created at run-time
= process creation is a collective operation
= the newly created process group gets its own MPI_COMM_WORLD

= communication between process groups uses an
intercommunicator

==T" Roland Wismdiller :
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4.11 Further concepts ... [I

= One-sided communication (since MPI-2)
= access to the address space of other processes
= operations: read, write, atomic update
= weak consistency model

= explicit fence and lock/unlock operations for
synchronisation

w yuseful for applications with irregular communication
= One process alone can execute the communication

= Parallel /O (since MPI-2)
= processes have individual views to a file
= gpecifiec by an MPI data type

= file operations: individual/ collective, private /shared file
pointer, blocking / non-blocking

=== Roland Wismduiller .
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 360

4,12 Summary n

= Basic routines:

= Tnit, Finalize, Comm_size, Comm_rank, Send, Recv
w Complex data types in messages

w Pack and Unpack

= user defined data types

= also for non-contiguous data
(e.g., column of a matrix)

= Communicators: process group + communication context
= Non-blocking communication: Isend, Irecv, Test, Wait

= Collective operations

w Barrier, Bcast, Scatter(v), Gather(v), Reduce, ...
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5 Optimization Techniques ... n

= |n the following: examples for important techniques to optimize
parallel programs
= Shared memory:
= cache optimization: improve the locality of memory accesses
= |oop interchange, tiling
= array padding
= false sharing

= Message passing:
= combining messages
= |atency hiding

=7" Roland Wismliller :
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5.1 Cache Optimization ‘I

Example: summation of a matrix in C++ (= 05/sum. cpp)

double a[N] [N]; double a[N] [N];
for (3j=0; j<N; j++) { for (i=0;i<N;i++) {
for (i=0;i<N;i++) { for (3j=0; j<N; j++) {
s += al[il[jl; s += a[i]l[]j];
} column-wise traversal } row—wise traversal
N=8192: Run time: 930ms Runtime: 80ms  (pspc02,
N=8193: Run time: 140 ms Run time: 80ms g++ -03)

= Reason: caches
= higher hit rate when matrix is traversed row-wise
= although each element is used only once ...

= Remark: C/C++ stores a matrix row-major, Fortran column-major
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5.1 Cache Optimization ... n

Details on caches: cache lines
w Storage of data in the cache and transfer between main memory
and cache are performed using larger blocks

= reason: after a memory cell has been addressed, the
subsequent cells can be read very fast

= gsize of a cache line: 32-128 Byte

= |n the example:

= row-wise traversal: after the cache line for a[i] [j] has been
loaded, the values of a[i+1] [j], al[i+2] [j], ... are already in
the cache, too

= column-wise traversal: the cache line for a[i] [j] has already
been evicted, when a[i+1] [j], ... are used

= Rule: traverse memory in linearly increasing order, if possible!
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5.1 Cache Optimization ... ‘I

Details on caches: set-associative caches
= A memory block (with given address) can be stored only at a few
places in the cache
= reason: easy retrieval of the data in hardware
w ysually, a set has 2 to 16 entries
= the entry within a set is determined using the LRU strategy
= The lower k Bits of the address determine the set
(k depends on cache size and degree of associativity)

= for all memory locations, whose lower k address bits are the
same, there are only 2 - 16 possible cache entries!

=== Roland Wismduiller .
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5.1 Cache Optimization ... n

Details on caches: set-associative caches ...

Cache: 512 KByte, 8—way set associatice, line size 64 Byte Matrix 8192 x 8192 at address 0x470000:
0 8 10 18 20 28 30 38 0 8 10 FFFO FFF8
8 ho 470000
0000 [aca® 480000
in 49 0000
each 4A 0000
set 4B 0000
4C 0000
4D 0000
4
0040 4E 0000
1024 4F 0000
Sets
2045 0000
2046 0000
FFCO
10 bits 6 bits
) Address [Don'’t care| Cache set  |Block offset |
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Notes for slide 367:

In the figure shown on the slide, the address of each row and the offset of each column
of the matrix is indicated (all addresses are shown as hexadecimal numbers).

When a thread traverses the first column of the matrix, the lower 16 address bits of

the element being read will always be 0000. Thus, when the data is loaded into the
cache, only the first set (with address 0000) is used, since the set address in the cache
is determined by bits 6..15 of the memory address (Bits 0..5 determine the offset in the
cache line). Now when the element in row 8 is read, one of the cache lines in set 0000
must be evicted, since each set contains only 8 cache lines. This means when the next
column is traversed, the data is no longer in the cache.

A detailed explanation of the example is given in the lecture.

367-1

5.1 Cache Optimization ... n

Details on caches: set-associative caches ...

= |n the example: with NV = 8192 and column-wise traversal

= a cache entry is guaranteed to be evicted after a few iterations
of the i-loop (address distance is a power of two)

= cache hit rate is very close to zero

= Rule: when traversing memory, avoid address distances that are
a power of two!
= (avoid powers of two as matrix size for large matrices)
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5.1 Cache Optimization ... ‘I

Important cache optimizations

= Loop interchange: swapping of loops
= such that memory is traversed in linearly increasing order
w with C/C++: traverse matrices row-wise
= with Fortran: traverse matrices column-wise

= Array padding

= if necessary, allocate matrices larger than necessary, in order
to avoid a power of two as the length of each row

= Tiling: blockwise partitioning of loop iterations

= restructure algorithms in such a way that they work as long as
possible with sub-matrices, which fit completely into the

caches
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5.1 Cache Optimization ... "
Example: Matrix multiply (1= 05/matmult.c)

= Naive code:

double a[N] [N], b[N][N],
for (i=0; i<N; i++)
for (3j=0; Jj<N; j++)
for (k=0; k<N; k++)
c[i][3] += alillk] * b[k][3]];

= Performance with different compiler optimization levels:
(N=500, g++ 4.6.3, Intel Core i7 2.8 GHz (bspc02))

= -00: 0.3 GFlop/s
-O: 1.3 GFlop/s
-02: 1.3 GFlop/s
-083: 2.4 GFlop/s (SIMD vectorization!)

L 2N S
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5.1 Cache Optimization ...

Example: Matrix multiply ...

= Scalability of the performance for different matrix sizes:

Q /(-\I)\ T T T T T 00 T
S O —Q —x— |
i 02 —%—
<8l -03 —&—
= -
o
2 _
1.5 .
1 _
0.5 |
1 7 3
I I I I I |
400 600 800 1000 1200 N
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5.1 Cache Optimization ...

Example: Matrix multiply ...

w Optimized order of the loops:

double a[N][N], b[N]I[N],
for (i=0; i<N; i++)
for (k=0; k<N; k++)
for (j=0; Jj<N; J++)
c[i]l[j] += alil[k] * b[k]I[]j];

= Matrix b now is traversed row-wise
= considerably less L1 cache misses
= substantially higher performance:

= N=500, -O3: 4.2 GFlop/s instead of 2.4 GFlop/s

= considerably better scalability
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Notes for slide 372:

The statement c[i] [j] += alil [k] + b[k] [j] has a true dependence, an anti de-
pendence and an output dependence bewteen different iterations of the k-loop. Thus,
the dependence vector for all these dependences is (=, =, <).

So according to slide 228, interchanging the j- and k is permitted, since the loops are
perfectly nested, the loop bounds are independent, and there is no dependence with a
direction vector of (x, <, >).

372-1
5.1 Cache Optimization ... n
(Animated slide)
Example: Matrix multiply ...
= Comparison of both loop orders:
O T T T - T T o
SR ijk:GFlop/s —®— | ©
k) ijk:L1-Misses i
£ ijk:L2-Misses 18
<o ijk:L3-Misses ?
o =
3 ik{':GFIop/s —e— ]
iléj:b—Misses
ikj:L2—-Misses
2r ik}:LS—Misses 102
1F 40.1
o -— j
O - O T T I P -~ e < L it l | 1
400 600 800 1000 1200 N
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Notes for slide 373:

The decrease in performance of the 'ijk’ loop order between N=500 and N=550 is due
to a large increase in the L3 misses from 4.4 - 10—5 to 1.4 - 10—% (which is not visible
in the figure due to the scaling) and the increase in L1 misses.

The decrease in performance of the 'ikj’ loop order between N=800 and N=1000 is also
caused by an increase in L3 misses (from 1.4 - 10410 1.6 - 1073).

373-1

5.1 Cache Optimization ... "

Example: Matrix multiply ...

= Block algorithm (tiling) with array padding:

double a[N][N+1], b[N][N+1],
for (ii=0; ii<N; ii+=4)
for (kk=0; kk<N; kk+=4)
for (3j3=0; 3jj<N; jj+=4)
for (i=0; i<4; i++)
for (k=0; k<4; k++)
for (3=0; j<4; j++)
c[i+ii] [j+3J]j] += a[i+ii] [k+kk] * b[k+kk][J+3]il;

= Matrix is viewed as a matrix of 4x4 sub-matrices
= multiplication of sub-matrices fits into the L1 cache

= Acheives a performance of 4 GFlop/s even with N=2048
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Notes for slide 374:

See slide 229 for the details of the code transformation (strip mining followed by loop
interchange) used to create this version of the code.

5.1 Cache Optimization ...

374-1

Example: Matrix multiply ...

= Performance as a function of block size (N=2048):

O \ s —o— | &
SR GFlop/s o
55 L1-Misses L
EQ [ L2-Misses 3
S O L3—Misses a
s | S
o | s 0.04
1k 0.02
O ! A i i i 4 : _ i ;
1 4 16 64 256 Block size
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5.1 Cache Optimization ...

Example: Matrix multiply ...

w Scalability of performance for different matrix sizes:

g@\ | | | (_%_
o) LL.
(<o @
o) =
oY
3r a
GFlop/s —&—
L1-Misses
2T L2—Misses 4 0.02
L3-Misses
1 4 0.01
O . N W = 2 i - | =)
256 512 1024 2048 N
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5.1 Cache Optimization ... n

Cache optimization for parallel computers
= Cache optimization is especially important for parallel computers
(UMA and NUMA)

= |arger difference between the access times of cache and main
memory

= concurrency conflicts when accessing main memory

= Additional problem with parallel computers: false sharing

= several variables, which do not have a logical association, can
(by chance) be stored in the same cache line

= write accesses to these variables lead to frequent cache
invalidations (due to the cache coherence protocol)

= performance degrades drastically

==T" Roland Wismdiller .
*_1* Betricbssysteme / verteilte Systeme Parallel Processing (14/15) 377



5.1 Cache Optimization ... ‘I

Example for false sharing: parallel summation of an array
(= 05/false.cpp)

w Global variable double sum[NUM_THREADS] for the partial sums

w \ersion 1: thread i adds t0 sum[i]
= run-time*) with 4 threads: 0.21 s, sequentially: 0.17 s !
w performance loss due to false sharing: the variables sum[i]
are located in the same cache line
w \ersion 2: thread i first adds to a local variable and stores the
result to sum[i] at the end
w run-time(*) with 4 threads: 0.043 s

= Rule: variables that are used by different threads should be
separated in main memory (e.g., use padding)!

(*) 8000 x 8000 matrix, Intel Core i7, 2.8 GHz, without compiler optimization
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Notes for slide 378:

When compiler optimization is enabled with gcc, the run-time of the parallel program
in version 1 is reduced to 0.045 s (version 2: 0.043 s, sequentially: 0.16 s), i.e., in this
code, gcc is smart enough to detect and solve the problem with false sharing.
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5.2 Optimization of Communication [I

Combining messages

= The time for sending short messages is dominated by the
(software) latency
= |.e., a long message is “cheaper” than several short ones!

w Example: PC cluster in the lab H-A 4111 with MPICH2
= 32 messages with 32 Byte each need 32 - 145 = 4640us
= one message with 1024 Byte needs only 159us

= Thus: combine the data to be sent into as few messages as
possible

= where applicable, this can also be done with communication in
loops (hoisting)

=== Roland Wismduiller .
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5.2 Optimization of Communication ... "

Hoisting of communication calls

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
b=f£f(..., 1); recv(&b, 1, P1l);
send (&b, 1, P2); a[i] = a[i] + b;

} {}}
for (i=0; i<N; i++) { recv(b, N, Pl);
b[i] = £(..., 1); for (i=0; i<N; i++) {

} a[i] = a[i] + b[i];
send (b, N, P2); }

= Send operations are hoisted past the end of the loop,
receive operations are hoisted before the beginning of the loop

w Prerequisite: variables are not modified in the loop (sending
process) or not used in the loop (receiving process)
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5.2 Optimization of Communication ... "

Latency hiding

-

Goal: hide the Sender Receiver
communication latency, i.e.,

overlap it with computations i MPI_Irecv

As early as possible:

= post the receive
operation (MPI_lrecv)

MPI knows
dest. buffer

MPI_Send

Message
w Then: i is directly
' written into
w send the data : dest. buffer
= As late as possible: \
= finish the receive !MPI_Wait
operation (MPI1_Wait) y
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5.3 Summary n

-

!

Take care of good locality (caches)!
= traverse matrices in the oder in which they are stored

= avoid powers of two as address increment when sweeping
through memory

= use block algorithms

Avoid false sharing!

Combine messages, if possible!

Use latency hiding when the communication library can execute
the receipt of a message “in background”

If send operations are blocking: execute send and receive
operations as synchronously as possible
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6 Summary /Important Topics
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6 Summary / Important Topics ... n

2 Basics of Parallel Processing
w Parallelism: concurrency/pipelining, data/task parallelism

Data dependences (true, anti, output) and synchronisation

-
= SIMD computers
-

MIMD computers: UMA, NUMA, NORMA
w architectural properties, programming

!

Caches, cache coherency (= 5.1)

!

Design process (classes of partitioning, communication, mapping)

!

Organisation forms (manager/worker, task pool, divide and
conquer, SPMD, fork/join, ...)

= Performance (speedup, efficiency, performance modeling)
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6 Summary / Important Topics ... ‘I

3 Parallel Programming with Shared Memory

= OpenMP programming model (fork/join)

w parallel directive: syntax, semantics

= shared, private, firstprivate variables

= for directive: syntax, semantics
= scheduling and scheduling options

= Parallelization of loops
= condition, handling of dependences

= Parallelization of Jacobi and Gauss/Seidel
= Synchronization: barrier, critical/atomic, ordered, reduction

w Task parallelism: sections / task directive, task synchronization
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6 Summary / Important Topics ... n

4 Parallel Programming with Message Passing
= MPI programming model (SPMD)

Point-to-point communication: Send, Recv

-
= Nonblocking communication
= Derived data types

-

Communicators

= Collective operations: Bcast, Scatter, Gather, Reduce
5 Optimization Techniques

= QOrganization of caches

= Rules for optimal use of caches

= False sharing
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