
Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (1/15) i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: January 13, 2025

Parallel Processing

Winter Term 2024/25

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 362

Parallel Processing
Winter Term 2024/25

5 Optimization Techniques

5 Optimization Techniques ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 363

➥ In the following: examples for important techniques to optimize

parallel programs

➥ Shared memory:

➥ cache optimization: improve the locality of memory accesses

➥ loop interchange, tiling

➥ array padding

➥ false sharing

➥ Message passing:

➥ combining messages

➥ latency hiding

5.1 Cache Optimization

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 364

Example: summation of a matrix in C++ (☞ 05/sum.cpp)

N=8192:

N=8193:

Run time: 930ms

Run time: 140 ms

Run time: 80ms

Run time: 80ms

double a[N][N];
...

s += a[i][j];
}

}

double a[N][N];
...

for (j=0;j<N;j++) {

for (i=0;i<N;i++) {

s += a[i][j];
}

}

for (i=0;i<N;i++) {

for (j=0;j<N;j++) {

row−wise traversalcolumn−wise traversal

g++ −O3)
(bspc02,

➥ Reason: caches

➥ higher hit rate when matrix is traversed row-wise

➥ although each element is used only once ...

➥ Remark: C/C++ stores a matrix row-major, Fortran column-major

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 365

Details on caches: cache lines

➥ Storage of data in the cache and transfer between main memory

and cache are performed using larger blocks

➥ reason: after a memory cell has been addressed, the

subsequent cells can be read very fast

➥ size of a cache line: 32-128 Byte

➥ In the example:

➥ row-wise traversal: after the cache line for a[i][j] has been

loaded, the values of a[i+1][j], a[i+2][j], ... are already in

the cache, too

➥ column-wise traversal: the cache line for a[i][j] has already

been evicted, when a[i+1][j], ... are used

➥ Rule: traverse memory in linearly increasing order, if possible!

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 366

Details on caches: set-associative caches

➥ A memory block (with given address) can be stored only at a few

places in the cache

➥ reason: easy retrieval of the data in hardware

➥ usually, a set has 2 to 16 entries

➥ the entry within a set is determined using the LRU strategy

➥ The lower k Bits of the address determine the set

(k depends on cache size and degree of associativity)

➥ for all memory locations, whose lower k address bits are the

same, there are only 2 - 16 possible cache entries!

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 367

Details on caches: set-associative caches ...

...0 8 10 18 20 28 30 38

...

0000

0040

FFC0

...

0 8 10

...

47 0000

48 0000

49 0000

4A 0000

4B 0000

4C 0000

4D 0000

4E 0000

4F 0000

2045 0000

2046 0000

Address Don’t care Cache set

10 bits

Block offset

6 bits

...

FFF8FFF0

Cache: 512 KByte, 8−way set associatice, line size 64 Byte Matrix 8192 x 8192 at address 0x470000:

8
cache
lines
in
each
set

1024
Sets

367-1

Notes for slide 367:

In the figure shown on the slide, the address of each row and the offset of each column
of the matrix is indicated (all addresses are shown as hexadecimal numbers).

When a thread traverses the first column of the matrix, the lower 16 address bits of
the element being read will always be 0000. Thus, when the data is loaded into the
cache, only the first set (with address 0000) is used, since the set address in the cache
is determined by bits 6..15 of the memory address (Bits 0..5 determine the offset in the
cache line). Now when the element in row 8 is read, one of the cache lines in set 0000
must be evicted, since each set contains only 8 cache lines. This means when the next
column is traversed, the data is no longer in the cache.

A detailed explanation of the example is given in the lecture.

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 368

Details on caches: set-associative caches ...

➥ In the example: with N = 8192 and column-wise traversal

➥ a cache entry is guaranteed to be evicted after a few iterations

of the i-loop (address distance is a power of two)

➥ cache hit rate is very close to zero

➥ Rule: when traversing memory, avoid address distances that are

a power of two!

➥ (avoid powers of two as matrix size for large matrices)

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 369

Important cache optimizations

➥ Loop interchange: swapping of loops

➥ such that memory is traversed in linearly increasing order

➥ with C/C++: traverse matrices row-wise

➥ with Fortran: traverse matrices column-wise

➥ Array padding

➥ if necessary, allocate matrices larger than necessary, in order

to avoid a power of two as the length of each row

➥ Tiling: blockwise partitioning of loop iterations

➥ restructure algorithms in such a way that they work as long as

possible with sub-matrices, which fit completely into the

caches

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 370

(☞ 05/matmult.c)Example: Matrix multiply

➥ Naive code:

for (j=0; j<N; j++)

for (k=0; k<N; k++)

double a[N][N], b[N][N], ...

for (i=0; i<N; i++)

c[i][j] += a[i][k] * b[k][j];

➥ Performance with different compiler optimization levels:

(N=500, g++ 4.6.3, Intel Core i7 2.8 GHz (bspc02))

➥ -O0: 0.3 GFlop/s

➥ -O: 1.3 GFlop/s

➥ -O2: 1.3 GFlop/s

➥ -O3: 2.4 GFlop/s (SIMD vectorization!)

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 371

Example: Matrix multiply ...

➥ Scalability of the performance for different matrix sizes:

−O0
−O

−O2
−O3

0

0.5

1

1.5

2

400 600 800 1000 1200 N

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 372

Example: Matrix multiply ...

➥ Optimized order of the loops:

double a[N][N], b[N][N], ...

for (i=0; i<N; i++)

c[i][j] += a[i][k] * b[k][j];

for (k=0; k<N; k++)

for (j=0; j<N; j++)

➥ Matrix b now is traversed row-wise

➥ considerably less L1 cache misses

➥ substantially higher performance:

➥ N=500, -O3: 4.2 GFlop/s instead of 2.4 GFlop/s

➥ considerably better scalability

372-1

Notes for slide 372:

The statement c[i][j] += a[i][k] + b[k][j] has a true dependence, an anti de-
pendence and an output dependence bewteen different iterations of the k-loop. Thus,
the dependence vector for all these dependences is (=,=, <).

So according to slide 228, interchanging the j- and k is permitted, since the loops are
perfectly nested, the loop bounds are independent, and there is no dependence with a
direction vector of (∗, <,>).

5.1 Cache Optimization ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 373

Example: Matrix multiply ...

➥ Comparison of both loop orders:

M
is

s
e
s
/F

lo
p

N

0.1

0.2

(G
F

lo
p
/s

)
P

e
rf

o
rm

a
n
c
e

ijk:GFlop/s
ijk:L1−Misses
ijk:L2−Misses
ijk:L3−Misses

ikj:GFlop/s
ikj:L1−Misses
ikj:L2−Misses
ikj:L3−Misses

0

1

2

400 600 800 1000 1200

3

373-1

Notes for slide 373:

The decrease in performance of the ’ijk’ loop order between N=500 and N=550 is due

to a large increase in the L3 misses from 4.4 · 10−5 to 1.4 · 10−4 (which is not visible
in the figure due to the scaling) and the increase in L1 misses.

The decrease in performance of the ’ikj’ loop order between N=800 and N=1000 is also

caused by an increase in L3 misses (from 1.4 · 10−4 to 1.6 · 10−3).

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 374

Example: Matrix multiply ...

➥ Block algorithm (tiling) with array padding:

double a[N][N+1], b[N][N+1], ...

for (ii=0; ii<N; ii+=4)

for (kk=0; kk<N; kk+=4)

for (jj=0; jj<N; jj+=4)

for (i=0; i<4; i++)

for (k=0; k<4; k++)

for (j=0; j<4; j++)

c[i+ii][j+jj] += a[i+ii][k+kk] * b[k+kk][j+jj];

➥ Matrix is viewed as a matrix of 4x4 sub-matrices

➥ multiplication of sub-matrices fits into the L1 cache

➥ Acheives a performance of 4 GFlop/s even with N=2048

374-1

Notes for slide 374:

See slide 229 for the details of the code transformation (strip mining followed by loop
interchange) used to create this version of the code.

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 375

Example: Matrix multiply ...

➥ Performance as a function of block size (N=2048):

M
is

s
e
s
/F

lo
p

0.06

0.04

0.02

(G
F

lo
p
/s

)
P

e
rf

o
rm

a
n
c
e

Block size
0

1

2

3

1 4 16 64 256

GFlop/s
L1−Misses
L2−Misses
L3−Misses

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 376

Example: Matrix multiply ...

➥ Scalability of performance for different matrix sizes:
M

is
s
e
s
/F

lo
p

0.01

0.02

N

(G
F

lo
p
/s

)
P

e
rf

o
rm

a
n
c
e

0

1

2

3

256 512 1024 2048

GFlop/s
L1−Misses
L2−Misses
L3−Misses

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 377

Cache optimization for parallel computers

➥ Cache optimization is especially important for parallel computers

(UMA and NUMA)

➥ larger difference between the access times of cache and main

memory

➥ concurrency conflicts when accessing main memory

➥ Additional problem with parallel computers: false sharing

➥ several variables, which do not have a logical association, can

(by chance) be stored in the same cache line

➥ write accesses to these variables lead to frequent cache

invalidations (due to the cache coherence protocol)

➥ performance degrades drastically

5.1 Cache Optimization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 378

Example for false sharing: parallel summation of an array
(☞ 05/false.cpp)

➥ Global variable double sum[NUM THREADS] for the partial sums

➥ Version 1: thread i adds to sum[i]

➥ run-time(∗) with 4 threads: 0.21 s, sequentially: 0.17 s !

➥ performance loss due to false sharing: the variables sum[i]

are located in the same cache line

➥ Version 2: thread i first adds to a local variable and stores the
result to sum[i] at the end

➥ run-time(∗) with 4 threads: 0.043 s

➥ Rule: variables that are used by different threads should be
separated in main memory (e.g., use padding)!

(∗) 8000 x 8000 matrix, Intel Core i7, 2.8 GHz, without compiler optimization

378-1

Notes for slide 378:

When compiler optimization is enabled with gcc, the run-time of the parallel program
in version 1 is reduced to 0.045 s (version 2: 0.043 s, sequentially: 0.16 s), i.e., in this
code, gcc is smart enough to detect and solve the problem with false sharing.

5.2 Optimization of Communication

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 379

Combining messages

➥ The time for sending short messages is dominated by the

(software) latency

➥ i.e., a long message is “cheaper” than several short ones!

➥ Example: PC cluster in the lab H-A 4111 with MPICH2

➥ 32 messages with 32 Byte each need 32 · 145 = 4640µs

➥ one message with 1024 Byte needs only 159µs

➥ Thus: combine the data to be sent into as few messages as

possible

➥ where applicable, this can also be done with communication in

loops (hoisting)

5.2 Optimization of Communication ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 380

Hoisting of communication calls

for (i=0; i<N; i++) {

}

recv(&b, 1, P1);

a[i] = a[i] + b;

recv(b, N, P1);

for (i=0; i<N; i++) {

a[i] = a[i] + b[i];
}

for (i=0; i<N; i++) {

}

b = f(..., i);

send(&b, 1, P2);

for (i=0; i<N; i++) {

b[i] = f(..., i);
}

send(b, N, P2);

➥ Send operations are hoisted past the end of the loop,

receive operations are hoisted before the beginning of the loop

➥ Prerequisite: variables are not modified in the loop (sending

process) or not used in the loop (receiving process)

5.2 Optimization of Communication ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 381

Latency hiding

➥ Goal: hide the

communication latency, i.e.,

overlap it with computations

➥ As early as possible:

➥ post the receive

operation (MPI Irecv)

➥ Then:

➥ send the data

➥ As late as possible:

➥ finish the receive

operation (MPI Wait)

Sender Receiver

M
P

I_
S

e
n
d

MPI_Irecv

MPI_Wait

MPI knows
dest. buffer

Message
is directly
written into
dest. buffer

Header

OK to send

Data

5.3 Summary

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 382

➥ Take care of good locality (caches)!

➥ traverse matrices in the oder in which they are stored

➥ avoid powers of two as address increment when sweeping

through memory

➥ use block algorithms

➥ Avoid false sharing!

➥ Combine messages, if possible!

➥ Use latency hiding when the communication library can execute

the receipt of a message “in background”

➥ If send operations are blocking: execute send and receive

operations as synchronously as possible

	5 Optimization Techniques
	5.1 Cache Optimization
	5.2 Optimization of Communication
	5.3 Summary

