Parallel Processing

Winter Term 2024/25

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: January 13, 2025

E*=="" Roland Wismiiller i
=.*..= Betriebssysteme / verteilte Systeme Parallel Processing (1/15)

Parallel Processing
Winter Term 2024/25

5 Optimization Techniques

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 362

5 Optimization Techniques ... "

= |n the following: examples for important techniques to optimize
parallel programs
= Shared memory:

= cache optimization: improve the locality of memory accesses
= |oop interchange, tiling
= array padding

= false sharing

= Message passing:
= combining messages
= |atency hiding

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 363

5.1 Cache Optimization

d

Example: summation of a matrix in C++ (= 05/sum. cpp)

double a[N] [N];

for (j=0; j<N; j++) {
for (i=0;i<N;i++) {
s += a[i] []];

}

} column—wise traversal

N=8192: Run time: 930ms
N=8193: Runtime: 140 ms

w Reason: caches

double a[N] [N];

for (i=0;i<N;i++) {
for (j=0;j<N; j++) {

| 8 += alillil;
} row—wise traversal

Run time: 80ms (bspco2,
Run time: 80ms g++ —-03)

= higher hit rate when matrix is traversed row-wise
= although each element is used only once ...

= Remark: C/C++ stores a matrix row-major, Fortran column-major

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Parallel Processing (14/15) 364

5.1 Cache Optimization ... "

Details on caches: cache lines
= Storage of data in the cache and transfer between main memory
and cache are performed using larger blocks

= reason: after a memory cell has been addressed, the
subsequent cells can be read very fast

= sijze of a cache line: 32-128 Byte

= |n the example:

= row-wise traversal: after the cache line for a[i] [j] has been
loaded, the values of a[i+1] [j], al[i+2] [j], ... are already in
the cache, too

= column-wise traversal: the cache line for a[i] [j] has already
been evicted, when a[i+1] [j], ... are used

= Rule: traverse memory in linearly increasing order, if possible!

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 365

5.1 Cache Optimization ... "

Details on caches: set-associative caches

= A memory block (with given address) can be stored only at a few
places in the cache

= reason: easy retrieval of the data in hardware

= usually, a set has 2 to 16 entries

= the entry within a set is determined using the LRU strategy
= The lower k Bits of the address determine the set

(k depends on cache size and degree of associativity)

= for all memory locations, whose lower k address bits are the
same, there are only 2 - 16 possible cache entries!

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 366

5.1 Cache Optimization ...

d

Details on caches: set-associative caches ...

Cache: 512 KByte, 8—way set associatice, line size 64 Byte

Matrix 8192 x 8192 at address 0x470000:

== Betriebssysteme / verteilte Systeme

0 8 10 18 20 28 30 38 0 8 10 FFFO FFF8
gache 47 0000
: 48 0000
> lines
0000 n 49 0000
each 4A 0000
/ set 4B 0000
4C 0000
4D 0000
0040 4E 0000
N 1024 4F 0000
Sets
2045 0000
2046 0000
FFCO
10 bits 6 bits
B Address |Don't care Cache set Block offset
grE<2] Roland Wismiller Parallel Processing (14/15) 367

5.1 Cache Optimization ... "

Details on caches: set-associative caches ...

= |n the example: with N = 8192 and column-wise traversal

= 3 cache entry is guaranteed to be evicted after a few iterations
of the i-loop (address distance is a power of two)

= cache hit rate is very close to zero

= Rule: when traversing memory, avoid address distances that are
a power of two!
= (avoid powers of two as matrix size for large matrices)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 368

5.1 Cache Optimization ... "

Important cache optimizations

= Loop interchange: swapping of loops
= such that memory is traversed in linearly increasing order
= with C/C++: traverse matrices row-wise
= Wwith Fortran: traverse matrices column-wise

= Array padding
= if necessary, allocate matrices larger than necessary, in order
to avoid a power of two as the length of each row
= Tiling: blockwise partitioning of loop iterations

= restructure algorithms in such a way that they work as long as
possible with sub-matrices, which fit completely into the
caches

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 369

5.1 Cache Optimization ... "

Example: Matrix multiply (= 05/matmult. c)

w Naive code:

double a[N] [N], b[N][N],
for (i=0; i<N; i++)
for (j=0; Jj<N; J++)
for (k=0; k<N; k++)
c[i] [J] += al[il[k] * b[k][3J];

= Performance with different compiler optimization levels:
(N=500, g++ 4.6.3, Intel Core i7 2.8 GHz (bspc02))

= -0O0: 0.3 GFlop/s
- -O:. 1.3 GFlop/s
- -02: 1.3 GFlop/s
= -0O3: 2.4 GFlop/s (SIMD vectorization!)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 370

5.1 Cache Optimization ... ‘I

Example: Matrix multiply ...

= Scalability of the performance for different matrix sizes:

O/\U? | | | | | _OO |
S O —Q —x— _
L —02 —*%—
o9 03 —&—
= i
o
2 -
1.5 -
1 -
0.5 = = 1
O | | | | | |
400 600 800 1000 1200 N

E*T5="" Roland Wismdiller .
ZI5_I= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 371

5.1 Cache Optimization ... "

Example: Matrix multiply ...

= QOptimized order of the loops:

double a[N] [N], b[N][N],
for (i=0; i<N; i++)
for (k=0; k<N; k++)
for (3=0; Jj<N; j++)
c[i][]J] += ali]l[k] * b[k][]];

= Matrix b now is traversed row-wise
= considerably less L1 cache misses
= substantially higher performance:

= N=500, -O3: 4.2 GFlop/s instead of 2.4 GFlop/s
= considerably better scalability

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 372

5.1 Cache Optimization ...

=3

Example: Matrix multiply ...

= Comparison of both loop orders:

O I I I I - I I o
PN ijk:GFlop/s —&— | &
S & jk:L1-Misses T
E | ijk:L2-Misses S
oL ijk:L3—Misses &\
& D
=
* 3
2 0.2
1 0.1
1 o— o
O . N Y . . . i | I |
400 600 800 1000 1200
g2g=2 Roland Wismaller Parallel Processing (14/15) 373

Z5F.2F Betriebssysteme / verteilte Systeme

5.1 Cache Optimization ...

=3

Example: Matrix multiply ...

= Comparison of both loop orders:

O — | | | | | | o
oL
S8 T
£ .__././.—‘-Q—Q — 2
(<}S 7
D =
3T ikj:GFlop/s —e—
illzj:ll:;—Misses
ikj:L2—Misses
2T ik}:LB—I\/Iisses 0.2
1r 0.1
O - A - 2 Y I P - - R i ar L]
400 600 800 1000 1200
£2E=27 Roland Wismller Parallel Processing (14/15) 373

Z5F.2F Betriebssysteme / verteilte Systeme

5.1 Cache Optimization ... ‘I

Example: Matrix multiply ...

= Block algorithm (tiling) with array padding:

double a[N] [N+1l], b[N] [N+1],
for (i1i=0; ii<N; ii+=4)
for (kk=0; kk<N; kk+=4)
for (jj=0; Jj<N; Jjj+=4)
for (i=0; i<4; i++)
for (k=0; k<4; k++)
for (j=0; j<4; J++)
cl[i+ii] [j+3jj] += a[i+ii] [k+kk] * b[k+kk][j+3j];

= Matrix is viewed as a matrix of 4x4 sub-matrices
= multiplication of sub-matrices fits into the L1 cache

= Acheives a performance of 4 GFlop/s even with N=2048

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 374

5.1 Cache Optimization ...

=3

Example: Matrix multiply ...

= Performance as a function of block size (N=2048):

O Rope ' ! ' Q.
SR GFlop/s —®— | ©
k) L1-Misses T
EL T L2—-Misses S
=104 L3-Misses @
ke =
0.06
0.04
L 0.02
O : i i : £l 4 - S i —
1 4 16 64 256 Block size
£T#=ZT Roland Wismiller Parallel Processing (14/15) 375

Z5F.2F Betriebssysteme / verteilte Systeme

=3

5.1 Cache Optimization ...

Example: Matrix multiply ...

= Scalability of performance for different matrix sizes:

gg | | | E_
T O LL
EL | ’\/O*W'\e —O— —o— ¢ B
(38 7
o) S
o 3l X
GFlop/s —&—
L1-Misses
2 L2-Misses 4 0.02
L3-Misses
1 - . 001
O e O O S i S B L2 R S L T E) S | _J
256 512 1024 2048 N

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 376

5.1 Cache Optimization ... "

Cache optimization for parallel computers

= (Cache optimization is especially important for parallel computers
(UMA and NUMA)

= |arger difference between the access times of cache and main
memory

= concurrency conflicts when accessing main memory

= Additional problem with parallel computers: false sharing

= several variables, which do not have a logical association, can
(by chance) be stored in the same cache line

= Wwrite accesses to these variables lead to frequent cache
iInvalidations (due to the cache coherence protocol)

= performance degrades drastically

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 377

5.1 Cache Optimization ... "

Example for false sharing: parallel summation of an array
(= 05/false.cpp)

= (lobal variable double sum[NUM_THREADS] for the partial sums

= \ersion 1: thread i adds to sum[i]
= run-time(*) with 4 threads: 0.21 s, sequentially: 0.17 s !
= performance loss due to false sharing: the variables sum[i]
are located in the same cache line
= \ersion 2: thread i first adds to a local variable and stores the
result to sum[i] at the end
= run-time(*) with 4 threads: 0.043 s

= Rule: variables that are used by different threads should be
separated in main memory (e.g., use padding)!

(*) 8000 x 8000 matrix, Intel Core i7, 2.8 GHz, without compiler optimization

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 378

5.2 Optimization of Communication "

Combining messages

= The time for sending short messages is dominated by the
(software) latency

= j.e., a long message is “cheaper” than several short ones!

= Example: PC cluster in the lab H-A 4111 with MPICH2
= 32 messages with 32 Byte each need 32 - 145 = 4640us
= one message with 1024 Byte needs only 159us

= Thus: combine the data to be sent into as few messages as
possible

= where applicable, this can also be done with communication in
loops (hoisting)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 379

5.2 Optimization of Communication ... ‘I

Hoisting of communication calls

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
b=f(..., i); recv (&b, 1, Pl);
send (&b, 1, P2); a[i] = a[i] + Db;

} {}}
for (i=0; i<N; i++) { recv(b, N, Pl);
b[i] = £(..., 1); for (i=0; i<N; i++) {

} al[i] = a[i] + b[i];

send (b, N, P2); }
= Send operations are hoisted past the end of the loop,
receive operations are hoisted before the beginning of the loop

= Prerequisite: variables are not modified in the loop (sending
process) or not used in the loop (receiving process)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 380

5.2 Optimization of Communication ... ‘I

Latency hiding

= Goal: hide the Sender Receiver

communication latency, i.e.,
overlap it with computations i MPI_Irecv
O
= As early as possible: 5
.) MPI| knows
= post the receive _| dest. buffer
operation (MPI_lrecv) = Message
= Then: i is directly
| written into
= send the data | dest. buffer
= As late as possible: Y
= finish the receive !MPI_Wait
operation (MPI_Wait) \

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 381

5.3 Summary "

= Take care of good locality (caches)!
= traverse matrices in the oder in which they are stored

= avoid powers of two as address increment when sweeping
through memory

= use block algorithms

= Avoid false sharing!

‘

Combine messages, if possible!

‘

Use latency hiding when the communication library can execute
the receipt of a message “in background”

= |f send operations are blocking: execute send and receive
operations as synchronously as possible

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (14/15) 382

	5 Optimization Techniques
	5.1 Cache Optimization
	5.2 Optimization of Communication
	5.3 Summary

