
Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (1/15) i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: January 13, 2025

Parallel Processing

Winter Term 2024/25

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 195

Parallel Processing
Winter Term 2024/25

3 Parallel Programming with Shared Memory

3 Parallel Programming with Shared Memory ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 196

Contents

➥ OpenMP basics

➥ Loop parallelization and dependeces

➥ Exercise: The Jacobi and Gauss/Seidel Methods

➥ OpenMP synchronization

➥ Task parallelism with OpenMP

➥ Tutorial: tools for OpenMP

➥ Exercise: A solver for the Sokoban game

➥ Excursion: Lock-Free and Wait-Free Data Structures

Literature

➥ Wilkinson/Allen, Ch. 8.4, 8.5, Appendix C

➥ Hoffmann/Lienhart

3 Parallel Programming with Shared Memory ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 197

Approaches to programming with threads

➥ Using (system) libraries

➥ Examples: POSIX threads, Intel Threading Building Blocks

(TBB)

➥ As part of a programming language

➥ Examples: Java threads (☞ BS I), C++ threads (☞ 1.3)

➥ Using compiler directives (pragmas)

➥ Examples: OpenMP (☞ 3.1)

3.1 OpenMP Basics

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 198

Background

➥ Thread libraries (for FORTRAN and C) are often too complex
(and partially system dependent) for application programmers

➥ wish: more abstract, portable constructs

➥ OpenMP is an inofficial standard

➥ since 1997 by the OpenMP forum (www.openmp.org)

➥ API for parallel programming with shared memory using
FORTRAN / C / C++

➥ source code directives

➥ library routines

➥ environment variables

➥ Besides parallel processing with threads, OpenMP also supports
SIMD extensions and external accelerators (since version 4.0)

3.1 OpenMP Basics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 199

Parallelization using directives

➥ The programmer must specify

➥ which code regions should be executed in parallel

➥ where a synchronization is necessary

➥ This specification is done using directives (pragmas)

➥ special control statements for the compiler

➥ unknown directives are ignored by the compiler

➥ Thus, a program with OpenMP directives can be compiled

➥ with an OpenMP compiler, resulting in a parallel program

➥ with a standard compiler, resulting in a sequential program

3.1 OpenMP Basics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 200

Parallelization using directives ...

➥ Goal of parallelizing with OpenMP:

➥ distribute the execution of sequential program code to several

threads, without changing the code

➥ identical source code for sequential and parallel version

➥ Three main classes of directives:

➥ directives for creating threads (parallel, parallel region)

➥ within a parallel region: directives to distribute the work to the

individual threads

➥ data parallelism: distribution of loop iterations (for)

➥ task parallelism: parallel code regions (sections) and

explicit tasks (task)

➥ directives for synchronization

3.1 OpenMP Basics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 201

Parallelization using directives: discussion

➥ Compromise between

➥ completely manual parallelization (as, e.g., with MPI)

➥ automatic parallelization by the compiler

➥ Compiler takes over the organization of the parallel tasks

➥ thread creation, distribution of tasks, ...

➥ Programmer takes over the necessary dependence analysis

➥ which code regions can be executed in parallel?

➥ enables detailed control over parallelism

➥ but: programmer is responsible for correctness

3.1 OpenMP Basics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 202

Compiling and executing OpenMP programs

➥ Compilation with gcc (g++)

➥ typical call: g++ -fopenmp myProg.cpp -o myProg

➥ OpenMP 4.0 is supported since gcc 4.9

➥ Execution: identical to a sequential program

➥ e.g.: ./myProg

➥ (maximum) number of threads can be specified in environ-
ment variable OMP_NUM_THREADS

➥ e.g.: export OMP_NUM_THREADS=4

➥ specification holds for all programs started in the same

shell

➥ also possible: temporary (re-)definition of OMP_NUM_THREADS

➥ e.g.: OMP_NUM_THREADS=2 ./myProg

3.1.1 The parallel directive
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 203

An example (☞ 03/firstprog.cpp)

Program

main() {

}

cout << "Serial\n";

{
cout << "Parallel\n";

}
cout << "Serial\n";

Compilation

firstprog.cpp
g++ −fopenmp −o tst

#pragma omp parallel

Execution

Serial
Parallel

Parallel
Parallel
Serial
% ./firstprog
% export OMP_NUM_THREADS=3

Serial
Parallel
Parallel
Serial
% ./firstprog
% export OMP_NUM_THREADS=2

3.1.1 The parallel directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 204

Execution model: fork/join

Fork

Join

#pragma omp parallel
{

cout << "Serial\n";

}

cout << "Serial\n";

cout << "Par... cout << "Par...

3.1.1 The parallel directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 205

Execution model: fork/join ...

➥ Program starts with exactly one master thread

➥ When a parallel region (#pragma omp parallel) is reached,
additional threads will be created (fork)

➥ environment variable OMP_NUM_THREADS specifies the total
number of threads in the team

➥ The parallel region is executed by all threads in the team

➥ at first redundantly, but additional OpenMP directives allow a
partitioning of tasks

➥ At the end of the parallel region:

➥ all threads terminate, except the master thread

➥ master thread waits, until all other threads have terminated
(join)

3.1.1 The parallel directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 206

Syntax of directives (in C / C++)

➥ #pragma omp <directive> [<clause list>]

➥ <clause list>: List of options for the directive

➥ Directive only affects the immediately following statement or the

immediately following block, respectively

➥ static extent (statischer Bereich) of the directive

#pragma omp parallel

cout << "Hello\n"; // parallel

cout << "Hi there\n"; // sequential again

➥ dynamic extent (dynamischer Bereich) of a directive

➥ also includes the functions being called in the static extent

(which thus are also executed in parallel)

3.1.1 The parallel directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 207

Shared and private variables

➥ For variables in a parallel region there are two alternatives

➥ the variables is shared by all threads (shared variable)

➥ all threads access the same variable
➥ usually, some synchronization is required!

➥ each thread has its own private instance (private variable)

➥ can be initialized with the value in the master thread

➥ value is dropped at the end of the parallel region

➥ For variables, which are declared within the dynamic extent of a

parallel directive, the following holds:

➥ local variables are private

➥ static variables and heap variables (new) are shared

3.1.1 The parallel directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 208

Shared and private variables ...

➥ For variables, which have been declared before entering a

parallel region, the behavior can be specified by an option of the

parallel directive:

➥ private (<variable list>)

➥ private variable, without initialization

➥ firstprivate (<variable list>)

➥ private variable

➥ initialized with the value in the master thread

➥ shared (<variable list>)

➥ shared variable

➥ shared is the default for all variables

208-1

Notes for slide 208:

private and firstprivate are also possible with arrays. In this case, each thread
gets its own private array (i.e., in this case an array variable is not regarded as a pointer,
in contrast to the usual behavior in C/C++). When using firstprivate, the entire array
of the master thread is copied.

Global and static variables can be defined as private variables by a separate directive
#pragma omp threadprivate(<variable list>). An initialization when entering a
parallel region can be achieved by using the copyin option.

3.1.1 The parallel directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 209

Shared and private variables: an example (☞ 03/private.cpp)

h is private

usually should be

synchronized!

Accesses to k

Each thread has an

initialized copy of j

Each thread has a (non−initialized) copy of i

int i = 0, j = 1, k = 2;
#pragma omp omp parallel private(i) firstprivate(j)
{
int h = random() % 100;
cout << "P: i=" << i << ", j=" << j

<< ", k=" << k << ", h=" << h << "\n";
i++; j++; k++;

}
cout << "S: i=" << i << ", j=" << j

<< ", k=" << k << "\n";

Output (with 2 threads):

P: i=1028465, j=1, k=2, h=86
P: i=-128755, j=1, k=3, h=83
S: i=0, j=1, k=4

3.1.2 Library routines

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 210

➥ OpenMP also defines some library routines, e.g.:

➥ int omp_get_num_threads(): returns the number of threads

➥ int omp_get_thread_num(): returns the thread number

➥ between 0 (master thread) and omp_get_num_threads()-1

➥ int omp_get_num_procs(): number of processors (cores)

➥ void omp_set_num_threads(int nthreads)

➥ defines the number of threads (maximum is

OMP_NUM_THREADS)

➥ double omp_get_wtime(): wall clock time in seconds

➥ for runtime measurements

➥ in addition: functions for mutex locks

➥ When using the library routines, the code can, however, no longer
be compiled without OpenMP ...

3.1.2 Library routines ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 211

Example using library routines (☞ 03/threads.cpp)

#include <omp.h>

int me;

omp_set_num_threads(2); // use only 2 threads

#pragma omp parallel private(me)

{

me = omp_get_thread_num(); // own thread number (0 or 1)

cout << "Thread " << me << "\n";

if (me == 0) // threads execute different code!

cout << "Here is the master thread\n";

else

cout << "Here is the other thread\n";

}

➥ In order to use the library routines, the header file omp.h must be

included

3.2 Loop parallelization

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 212

Motivation

➥ Implementation of data parallelism

➥ threads perform identical computations on different parts of

the data

➥ Two possible approaches:

➥ primarily look at the data and distribute them

➥ distribution of computations follows from that

➥ e.g., with HPF or MPI

➥ primarily look at the computations and distribute them

➥ computations virtually always take place in loops

(⇒ loop parallelization)

➥ no explicit distribution of data

➥ for programming models with shared memory

3.2 Loop parallelization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 213

3.2.1 The for directive: parallel loops

#pragma omp for

for(...) ...

<clause_list>][

➥ Must only be used within the dynamic extent of a parallel

directive

➥ Execution of loop iterations will be distributed to all threads

➥ loop variable automatically is private

➥ Only allowed for “simple” loops

➥ no break or return, integer loop variable, ...

➥ No synchronization at the beginning of the loop

➥ Barrier synchronization at the end of the loop

➥ unless the option nowait is specified

213-1

Notes for slide 213:

➥ The option nowait is not accepted in a #pragma omp parallel for (as at the
end of a parallel region, there always is a global synchronisation)

➥ Besides the option nowait, the following additional options can be specified in the
<clause list> of a for directive:

➥ private, firstprivate, lastprivate, shared: see slides 208 and 218
(These options are only accepted in a #pragma omp parallel for, not in
a #pragma omp for inside a parallel region)

➥ schedule: see slide 215

➥ ordered: see slide 251

➥ reduction: see slide 249

➥ collapse(<num>): this option tells the compiler that the next <num> (perfectly)
nested loops should be collapsed into a single loop, whose iterations will then
be distributed.

3.2.1 The for directive: parallel loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 214

Example: vector addition

for (i=0; i<N; i++) {

double a[N], b[N], c[N];

int i;

#pragma omp parallel for

}

#pragma omp parallel
Short form for

{
#pragma omp for
...

}a[i] = b[i] + c[i];

➥ Each thread processes a part of the vector

➥ data partitioning, data parallel model

➥ Question: exactly how will the iterations be distributed to the
threads?

➥ can be specified using the schedule option

➥ default: with n threads, thread 1 gets the first n-th of the
iterations, thread 2 the second n-th, ...

3.2.1 The for directive: parallel loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 215

Scheduling of loop iterations

➥ Option schedule(<class> [, <size>])

➥ Scheduling classes:

➥ static: blocks of given size (optional) are distributed to the
threads in a round-robin fashion, before the loop is executed

➥ dynamic: iterations are distributed in blocks of given size,
execution follows the work pool model

➥ better load balancing, if iterations need a different amount
of time for processing

➥ guided: like dynamic, but block size is decreasing
exponentially (smallest block size can be specified)

➥ better load balancing as compared to equal sized blocks

➥ auto: determined by the compiler / run time system

➥ runtime: specification via environment variable

3.2.1 The for directive: parallel loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 216

Scheduling example(☞ 03/loops.cpp)

int i, j;

double x;

#pragma omp parallel for private(i,j,x) schedule(runtime)

for (i=0; i<40000; i++) {

x = 1.2;

for (j=0; j<i; j++) { // triangular loop

x = sqrt(x) * sin(x*x);

}

}

➥ Scheduling can be specified at runtime, e.g.:

➥ export OMP_SCHEDULE="static,10"

➥ Useful for optimization experiments

3.2.1 The for directive: parallel loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 217

Scheduling example: results

➥ Runtime with 4 threads on the lab computers:

OMP SCHEDULE "static" "static,1" "dynamic" "guided"

Time 3.1 s 1.9 s 1.8 s 1.8 s

➥ Load imbalance when using "static"

➥ thread 1: i=0..9999, thread 4: i=30000..39999

➥ "static,1" and "dynamic" use a block size of 1

➥ each thread executes every 4th iteration of the i loop

➥ can be very inefficient due to caches (false sharing, ☞ 5.1)

➥ remedy: use larger block size (e.g.: "dynamic,100")

➥ "guided" often is a good compromize between load balancing

and locality (cache usage)

3.2.1 The for directive: parallel loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 218

Shared and private variables in loops

➥ The parallel for directive can be supplemented with the
options private, shared and firstprivate (see slide 207 ff.)

➥ In addition, there is an option lastprivate

➥ private variable

➥ after the loop, the master thread has the value of the last
iteration

➥ Example:

int i = 0;

#pragma omp parallel for lastprivate(i)

for (i=0; i<100; i++) {

...

}

std::cout << "i=" << i << std::endl; // prints the value 100

3.2.2 Parallelization of Loops
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 219

When can a loop be parallelized?

No dependence True dependence Anti dependence

for(i=1;i<N;i++)

a[i] = a[i]
+ b[i−1];

for(i=1;i<N;i++)

a[i] = a[i−1]
+ b[i];

for(i=0;i<N;i++)

a[i] = a[i+1]
+ b[i];

➥ Optimal: independent loops (forall loop)

➥ loop iterations can be executed concurrently without any

synchronization

➥ there must not be any dependeces between statements in

different loop iterations

➥ (equivalent: the statements in different iterations must fulfill the

Bernstein conditions)

3.2.2 Parallelization of Loops ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 220

Handling of data dependences in loops

➥ Anti and output dependences:

➥ can always be removed, e.g., by consistent renaming of

variables

➥ in the previous example:

#pragma omp for

#pragma omp for

#pragma omp parallel
{

}

a2[i] = a[i];
for(i=1;i<=N;i++)

a2a[i] = [i+1] + b[i];
for(i=0;i<N;i++)

➥ the barrier at the end of the first loop is necessary!

3.2.2 Parallelization of Loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 221

Handling of data dependences in loops ...

➥ True dependence:

➥ introduce proper synchronization between the threads

➥ e.g., using the ordered directive (☞ 3.4):

#pragma omp parallel for ordered
for (i=1; i<N; i++) {

// long computation of b[i]

#pragma omp ordered
a[i] = a[i-1] + b[i];

}

➥ disadvantage: degree of parallelism often is largely reduced

➥ sometimes, a vectorization (SIMD) is possible (☞ ??), e.g.:

#pragma omp simd safelen(4)
for (i=4; i<N; gui++)

a[i] = a[i-4] + b[i];

3.2.3 Simple Examples
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 222

Matrix addition

double a[N][N];

double b[N][N];

int i,j;

for (i=0; i<N; i++) {

}

for (j=0; j<N; j++) {

a[i][j] += b[i][j];
}

No dependences in ’j’ loop:

− ’b’ is read only

− Elements of ’a’ are always

read in the same ’j’ iteration,

in which thay are written

double a[N][N];

}

double b[N][N];
int i,j

for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
#pragma omp parallel for

a[i][j] += b[i][j];
}

Inner loop can be
executed in parallel

3.2.3 Simple Examples ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 223

Matrix addition

double a[N][N];

double b[N][N];

int i,j;

for (i=0; i<N; i++) {

}

for (j=0; j<N; j++) {

a[i][j] += b[i][j];
}

No dependences in ’i’ loop:

− ’b’ is read only

− Elements of ’a’ are always

in which they are written

read in the same ’i’ iteration,

}

for (i=0; i<N; i++) {

double a[N][N];
double b[N][N];
int i,j;

#pragma omp parallel for
private(j)

for (j=0; j<N; j++) {
a[i][j] += b[i][j];

}

Outer loop can be
executed in parallel

Advantage: less overhead!

3.2.3 Simple Examples ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 224

Matrix multiplication

No dependences in the ’i’ and ’j’ loops

True dependece in the ’k’ loop

double a[N][N], b[N][N], c[N][N];

int i,j,k;

for (i=0; i<N; i++) {

}

for (j=0; j<N; j++) {

c[i][j] = 0;

for (k=0; k<N; k++)

c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

➥ Both the i and the j loop can be executed in parallel

➥ Usually, the outer loop is parallelized, since the overhead is lower

3.2.3 Simple Examples ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 225

Removing dependences

lastprivate(i) + barriers

int i;

{

for (i=1; i<N; i++)

#pragma omp for

double val = 1.2;
#pragma omp parallel

double a[N], b[N]

lastprivate(i)

a[i−1] = val;
}
a[i−1] = b[0];

;

#pragma omp for

, a2[N]

for (i=1; i<N; i++)
a2[i] = a[i];

b[i−1] = a [i] * a [i];2 2

Renaming + barrier

True dependece between

loop and environment

Anti depend. between iterations

double a[N], b[N];

int i;

}

a[i−1] = b[0];

for (i=1; i<N; i++) {

double val = 1.2;

a[i−1] = val;

b[i−1] = a[i] * a[i];

3.2.4 Dependence Analysis in Loops
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 226

Direction vectors

➥ Is there a dependence within a single iteration or between

different iterations?

S1 δ S2(=,=)
a

and ’j’ loop than S2

S1 in earlier iteration of ’i’

S1 δ(<,<) S2
t

Loop carried dependece

S1 in earlier iteration than S2

S1 δ(<) S2
t

S1 and S2 in same iteration

Direction vector:

S1 δ(=) S2
t

S1:

S2:

S2:

S1:

S1:

S2:

}

for (i=0; i<N; i++) {

}

for (i=1; i<N; i++) {

}

for (i=1; i<N; i++) {

a[i] = b[i] + c[i];

d[i] = a[i] * 5;

a[i] = b[i] + c[i];

d[i] = a[i−1] * 5;

a[i][j] = b[i][j] + 2;

for (j=1; j<N; j++) {

b[i][j] = a[i−1][j−1] − b[i][j];

}

3.2.4 Dependence Analysis in Loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 227

Formal computation of dependences

➥ Basis: Look for an integer solution of a system of (in-)equations

➥ Example:

for (i=0; i<10; i++ {

for (j=0; j<i; j++) {

a[i*10+j] = ...;

... = a[i*20+j-1];

}

}

Equation system:

0 ≤ i1 < 10

0 ≤ i2 < 10

0 ≤ j1 < i1

0 ≤ j2 < i2

10 i1 + j1 = 20 i2 + j2 − 1

➥ Dependence analysis always is a conservative approximation!

➥ unknown loop bounds, non-linear index expressions, pointers

(aliasing), ...

3.2.4 Dependence Analysis in Loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 228

Usage: applicability of code transformations

➥ Permissibility of code transformations depends on the (possibly)

present data dependences

➥ E.g.: parallel execution of a loop is possible, if

➥ this loop does not carry any data dependence

➥ i.e., all direction vectors have the form (...,=, ...) or

(..., 6=, ..., ∗, ...) [red: considered loop]

➥ E.g.: loop interchange is permitted, if

➥ loops are perfectly nested

➥ loop bounds of the inner loop are independent of the outer loop

➥ no dependences with direction vector (..., <,>, ...)

228-1

Notes for slide 228:

Here is an example with a dependence vector (>, ∗), which means that the inner loop
(i.e. the j-loop) can be parallelized:

for (i=1; i<N; i++) {

#pragma omp parallel for

for (j=1; j<N; j++) {

a[i][j] = b[j] + c[j]; // S1

d[j] = a[i+1][j-1] + 5; // S2

}

}

There is an anti-dependence from S2 to S1 (consider e.g. a[3][3]: it is read in iteration
i=2, j=4 and is written later in iteration i=3, j=3.

However, this dependence is not carried by the j-loop, but by the i-loop: If we con-
sider a fixed iteration of the i-loop, e.g., i=2, then the j-loop never reads and writes
the same element of a. E.g., it writes a[2][4] in iteration j=4, but reads a[3][4] in
iteration j=5.

On the other hand, in iteration, e.g., i=2, the body of the i-loop reads the elements
a[3][0..N-1], and later in iteration i=3, it writes the elements a[3][1..N], so we
have a loop carried (anti-)dependence in the i-loop.

228-2

The dependencies can be visualized in a diagram showing the iteration space of the
loops, where each loop iteration is shown as a dot. Figure a) shows that although there
are dependencies, the iterations of the j-loop can be carried out concurrently (indi-
cated by the green bars in the background), as there is no dependene between the
iterations.

Note that when looking at the outer i-loop, we have to consider its complete body as
one statement (i.e., we have to look at the union of all iterations of the inner j-loop),
so we end up with the picture in figure b). We immediately see that this is a sequential
loop.

i=1

i=2

i=3

i=4

i=5

i=6

i=7i=7

i=6

i=5

i=4

i=3

i=2

i=1

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=1..N

Sequential

execution order.

b)a)

Dependencies

between loop

iterations.

(Actually, figure a) shows that we also could execute the j-loop in parallel, if we interchange the loops, such that the j-loop becomes the

u outer loop and takes care about carrying the dependencies.)

3.2.4 Dependence Analysis in Loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 229

Example: block algorithm for matrix multiplication

DO IT = 1,N,IS

DO JT = 1,N,JS

DO KT = 1,N,KS

DO I = IT, MIN(N,IT+IS−1)

DO J = JT, MIN(N,JT+JS−1)

DO K = KT, MIN(N,KT+KS−1)

A(I,J)=A(I,J)+B(I,K)*C(K,J)

DO I = 1,N

DO IT = 1,N,IS

DO JT = 1,N,JS

DO KT = 1,N,KS

A(I,J)=A(I,J)+B(I,K)*C(K,J)

DO J = 1,N

DO K = 1,N

A(I,J)=A(I,J)+B(I,K)*C(K,J)

Strip

mining DO IT = 1,N,IS

DO I = 1,N

DO I = IT, MIN(N,IT+IS−1)

DO I = IT, MIN(N,IT+IS−1)

DO J = JT, MIN(N,JT+JS−1)

DO K = KT, MIN(N,KT+KS−1)

Loop
interchange

3.2.4 Dependence Analysis in Loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 230

Example: loop splitting

➥ Consider the following loop:

for (i=1; i<N-1; i++) {

a[i] = (c[i-1] + c[i+1])/2; // S1

b[i] = a[i-1]; // S2

}

➥ We have S1 δt(<) S2, which prevents parallelization of the loop

without synchronization

➥ However, since we do not have any dependence S2 δ(<) S1,
loop splitting is permitted, which results in:

for (i=1; i<N-1; i++)

a[i] = (c[i-1] + c[i+1])/2; // S1

for (i=1; i<N-1; i++)

b[i] = a[i-1]; // S2

3.2.4 Dependence Analysis in Loops ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 231

Example: loop splitting ...

➥ Execution of the original loop:

δt δt δt δt δtS1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

i=4 i=5i=1 i=2 i=3 ... i=N−1

➥ Execution of the transformed loop:

δt δt δt δt δtS1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

i=4 i=5i=1 i=2 i=3 ... i=N−1

3.3 Exercise: The Jacobi and Gauss/Seidel Methods

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 232

Numerical solution of the equations for thermal conduction

➥ Concrete problem: thin metal plate

➥ given: temperature profile of the boundary

➥ wanted: temperature profile of the interior (at equilibrium)

➥ Approach:

➥ discretization: consider the temperature only at equidistant

grid points

➥ 2D array of temperature values

➥ iterative solution: compute ever more exact approximations

➥ new approximations for the temperature of a grid point:

mean value of the temperatures of the neighboring points

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 233

Numerical solution of the equations for thermal conduction ...

j
i

t[i,j] = 0.25 * (t[i−1,j] + t[i,j−1] +

+ t[i,j+1] + t[i+1,j])

Metal plate

t[i,j]t[i−1,j] t[i+1,j]

t[i,j−1]

t[i,j+1]

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 234

Variants of the method

➥ Jacobi iteration

➥ to compute the new values, only the values of the last iteration

are used

➥ computation uses two matrices

➥ Gauss/Seidel relaxation

➥ to compute the new values, also some values of the current

iteration are used:

➥ t[i− 1, j] and t[i, j − 1]

➥ computation uses only one matrix

➥ usually faster convergence as compared to Jacobi

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) xii

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: January 13, 2025

Parallel Processing

Winter Term 2024/25

18.11.2024

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 235

Variants of the method ...

Jacobi Gauss/Seidel

for(i=1;i<N−1;i++) {

for(j=1;j<N−1;j++) {

}
}

(a[i−1][j] + ...);

do {

} until (converged);

do {

for(i=1;i<N−1;i++) {

for(j=1;j<N−1;j++) {

(a[i−1][j] + ...);
}

}

} until (converged);

b a[i][j] = 0.25 * [i][j] = 0.25 *

a[i][j] = b[i][j];
}

}

for(j=1;j<N−1;j++) {

for(i=1;i<N−1;i++) {

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 236

Dependences in Jacobi and Gauss/Seidel

➥ Jacobi: only between the two i loops

➥ Gauss/Seidel: iterations of the i, j loop depend on each other

j=1 j=2 j=3 j=4 j=5 j=6 j=7

i=1

i=2

i=3

i=4

i=5

i=6

i=7

Sequential
execution
order

The figure

shows the loop

iterations, not

the matrix

elements!

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 237

Parallelisation of the Gauss/Seidel method

➥ Restructure the i, j loop, such that the iteration space is traversed

diagonally

➥ no dependences between the iterations of the inner loop

➥ problem: varying degree of parallelism

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 238

Loop restructuring in the Gauss/Seidel method

➥ Row-wise traversal of the matrix:

for (i=1; i<n-1; i++) {

for (j=1; j<n-1; j++) {

a[i][j] = ...;

➥ Diagonal traversal of the matrix (☞ 03/diagonal.cpp):

for (ij=1; ij<2*n-4; ij++) {

int ja = (ij <= n-2) ? 1 : ij-(n-3);

int je = (ij <= n-2) ? ij : n-2;

for (j=ja; j<=je; j++) {

i = ij-j+1;

a[i][j] = ...;

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 239

Alternative parallelization of the Gauss/Seidel method

➥ Requirement: number of iterations is known in advance

➥ (or: we are allowed to execute a few more iterations after
convergence)

➥ Then we can use a pipeline-style parallelization

➥ synchronisation via ordered (☞ 3.4.4)

T0

T1

T2

T3

Iteration of

’i’ loop

SynchronisationIteration of outer

’do’ loop (index: k)

k+1 k+2kk−1

i+1
i

i−1

T1: k−1

T0: k

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 240

Results

➥ Speedup using g++ -O on bslab10 in H-A 4111 (eps=0.001):

Jacobi Gauss/Seidel (diagonal)

Thr. 500 700 1000 2000 4000 500 700 1000 2000 4000

1 0.9 0.9 0.9 0.9 0.9 1.8 2.0 1.6 1.6 1.3

2 1.8 1.5 1.4 1.4 1.4 3.5 3.7 2.1 2.6 2.6

3 2.6 2.0 1.6 1.6 1.6 4.0 4.4 2.5 2.7 3.1

4 3.3 2.3 1.7 1.6 1.6 4.1 4.8 3.0 3.0 3.5

➥ Slight performance loss due to compilation with OpenMP

➥ Diagonal traversal in Gauss/Seidel improves performance

➥ High speedup with Gauss/Seidel at a matrix size of 700

➥ data size: ∼ 8MB, cache size: 4MB per dual core CPU

240-1

Notes for slide 240:

Results of the pipelined parallelization of the Gauss/Seidel method
(g++ -O, bslab10, eps=0.001):

Diagonal traversal Pipelined parallelization

Thr. 500 700 1000 2000 4000 500 700 1000 2000 4000

1 1.8 2.0 1.6 1.6 1.3 1.0 1.0 1.0 1.0 1.0

2 3.5 3.7 2.1 2.6 2.6 1.9 1.9 1.9 1.9 1.9

3 4.0 4.4 2.5 2.7 3.1 2.7 2.7 2.7 2.6 2.7

4 4.1 4.8 3.0 3.0 3.5 2.4 3.3 3.5 3.2 3.3

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 241

Speedup on the HorUS cluster: Jacobi

Threads

S
p

e
e

d
u

p

0

2

4

6

8

10

2 4 6 8 10 12

4000

2000

700

500

1000

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 242

Speedup on the HorUS cluster: Gauss/Seidel (diagonal)

Threads

S
p

e
e

d
u

p

0

2

4

6

8

10

2 4 6 8 10 12

700
500

2000
1000
4000

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 243

Speedup on the HorUS cluster: Gauss/Seidel (pipeline)

Threads

S
p

e
e

d
u

p

0

2

4

6

8

10

2 4 6 8 10 12

500
700

2000
4000
1000

3.4 OpenMP Synchronization

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 244

➥ When using OpenMP, the programmer bears full responsibility for

the correct synchronization of the threads!

➥ A motivating example:

int j = 0;

#pragma omp parallel for

for (int i=1; i<N; i++) {

if (a[i] > a[j])

j = i;

}

➥ when the OpenMP directive is added, does this code fragment

still compute the index of the largest element in j?

➥ the memory accesses of the threads can be interleaved in an

arbitrary order⇒ nondeterministic errors!

3.4 OpenMP Synchronization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 245

Synchronization in OpenMP

➥ Higher-level, easy to use constructs

➥ Implementation using directives:

➥ critical: critical section

➥ atomic: atomic operations

➥ ordered: execution in program order

➥ barrier: barrier

➥ single and master: execution by a single thread

➥ taskwait and taskgroup: wait for tasks (☞ 3.5.2)

➥ flush: make the memory consistent

➥ memory barrier (☞ 2.4.2)

➥ implicitly executed with the other synchronization directives

3.4 OpenMP Synchronization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 246

3.4.1 Critical sections

Statement / Block

#pragma omp critical [(<name>)]

➥ Statement / block is executed under mutual exclusion

➥ In order to distinguish different critical sections, they can be

assigned a name

3.4 OpenMP Synchronization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 247

3.4.2 Atomic operations

Statement / Block

#pragma omp atomic [read write update capture] [seq_cst]|||

➥ Statement or block (only with capture) will be executed atomically

➥ usually by compiling it into special machine instrcutions

➥ Considerably more efficient than critical section

➥ The option defines the type of the atomic operation:

➥ read / write: atomic read / write

➥ update (default): atomic update of a variable

➥ capture: atomic update of a variable, while storing the old or
the new value, respectively

➥ Option seq cst: enforce memory consistency (flush)

247-1

Notes for slide 247:

Read and write operations are atomic, only if they can be implemented using a single
machine instruction. With larger data types it may happen that more than one machine
word must be read or written, respectively, which requires several memory accesses.
In these cases, atomic read and atomic write can be used to enforce an atomic
read or atomic write, respectively.

3.4.2 Atomic operations ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 248

Examples

➥ Atomic adding:

#pragma omp atomic update

x += a[i] * a[j];

➥ the right hand side will not be evaluated atomically!

➥ Atomic fetch-and-add :

#pragma omp atomic capture

{ old = counter; counter += size; }

➥ Instead of +, all other binary operators are possible, too

➥ With OpenMP 4, an atomic compare-and-swap can not yet be
implemented

➥ use builtin functions of the compiler, if necessary

➥ (OpenMP 5.1 introduces a compare clause)

248-1

Notes for slide 248:

When using the atomic directive the statement must have one of the following forms:

➥ With the read option: v = x;

➥ With the write option: x = <expr>;

➥ With the update option (or without option): x++; ++x; x--; ++x;

x <binop>= <expr>; x = x <binop> <expr>; x = <expr> <binop> x;

➥ With the capture option: v = x++; v = ++x; v = x--; v = ++x;

v = x <binop>= <expr>; v = x = x <binop> <expr>;

v = x = <expr> <binop> x;

Here, x and v are Lvalues (for example, a variable) of a scalar type, <binop> is one
of the binary operators +, *, -, /, &, ^, |, << or >> (not overloaded!), expr is a scalar
expression.

Note that expr is not evaluated atomically!

248-2

The capture option can also be used with a block, which has one of the following
forms:

{ v = x; x <binop>= <expr>; } { x <binop>= <expr>; v = x; }

{ v = x; x = x <binop> <expr>; } { v = x; x = <expr> <binop> x; }

{ x = x <binop> <expr>; v = x; } { x = <expr> <binop> x; v = x; }

{ v = x; x = <expr>; }

{ v = x; x++; } { v = x; ++x; }

{ ++x; v = x; } { x++; v = x; }

{ v = x; x--; } { v = x; --x; }

{ --x; v = x; } { x--; v = x; }

3.4 OpenMP Synchronization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 249

3.4.3 Reduction operations

➥ Often loops aggregate values, e.g.:

int a[N];

printf("sum=%d\n",sum);
}

#pragma omp parallel for reduction(+: sum)

sum += a[i];

for (int i=0; i<N; i++){

int sum = 0;

contains the sum of all elements
At the end of the loop, ’sum’

➥ reduction saves us a critical section

➥ each thread first computes its partial sum in a private variable

➥ after the loop ends, the total sum is computed

➥ Instead of + is is also possible to use other operators:
- * & | ^ && || min max

➥ in addition, user defined operators are possible

3.4.3 Reduction operations ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 250

➥ In the example, the reduction option transforms the loop like this:

int lsum = 0; // local partial sum

#pragma omp parallel
{

int a[N];

pragma omp for nowait No barrier at the end

of the loop

Add local partial sum
to the global sum

printf("sum=%d\n",sum);

}

pragma omp atomic

sum += lsum;

lsum += a[i];

}

int sum = 0;

for (int i=0; i<N; i++) {

3.4 OpenMP Synchronization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 251

3.4.4 Execution in program order

#pragma omp for ordered

for(...) {
...

Statement / Block
...

}

#pragma omp ordered

➥ The ordered directive is only allowed in the dynamic extent of a

for directive with option ordered

➥ recommendation: use option schedule(static,1)

➥ or schedule(static,n) with small n

➥ The threads will execute the instances of the statement / block

exacly in the same order as in the sequential program

3.4.4 Execution in program order ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 252

Execution with ordered

Barrier

T
im

e

Iterations

...

...

S2

S2

S2

i=0 i=2i=1 i=N−1

S2

#pragma omp for ordered

#pragma omp ordered
S1;

S3;
}

for(i=0; i<N; i++) {

S2;
S1

S1
S1 S1

S3

S3
S3 S3

3.4.4 Execution in program order ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 253

Execution with ordered ...

➥ Since OpenMP 4.5: ordered also allows to explicitly specify
dependencies that must be met

➥ Example:

#pragma omp parallel for ordered(1)

for (int i=3; i<100; i++) {

#pragma omp ordered depend(source)

a[i] = ...;

#pragma omp ordered depend(sink: i-3)

... = a[i-3];

}

➥ Argument of ordered: number of nested loops to be considered

➥ allows to specify dependencies in nested loops

➥ e.g.: ...(sink: i-1,j)

253-1

Notes for slide 253:

Example for a nested loop with dependencies:

#pragma omp parallel for ordered(2)

for (int i=1; i<100; i++) {

for (int j=1; j<100; j++) {

#pragma omp ordered depend(source)

a[i][j] = ...;

#pragma omp ordered depend(sink: i-1,j) depend(sink: i,j-1)

... = a[i-1][j] + a[i][j-1];

}

}

In an analogous way, the ordered directive allows to parallelize the Gauss/Seidel-
method in a pipeline style (☞ page 239).

3.4 OpenMP Synchronization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 254

3.4.5 Barrier

#pragma omp barrier

➥ Synchronizes all threads

➥ each thread waits, until all other threads have reached the

barrier

➥ Implicit barrier at the end of for, sections, and single directives

➥ can be removed by specifying the option nowait

3.4.5 Barrier ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 255

Example (☞ 03/barrier.cpp)

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define N 10000

float a[N][N];

main() {

int i, j;

#pragma omp parallel

{

int thread = omp_get_thread_num();

cout << "Thread " << thread << ": start loop 1\n";

3.4.5 Barrier ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 256

#pragma omp for private(i,j) // add nowait, as the case may be

for (i=0; i<N; i++) {

for (j=0; j<i; j++) {
a[i][j] = sqrt(i) * sin(j*j);

}
}

cout << "Thread " << thread << ": start loop 2\n";
#pragma omp for private(i,j)

for (i=0; i<N; i++) {
for (j=i; j<N; j++) {
a[i][j] = sqrt(i) * cos(j*j);

}

}
cout << "Thread " << thread << ": end loop 2\n";

}

}

3.4.5 Barrier ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 257

Example ...

➥ The first loop processes the lower triangle of the matrix a, the

second loop processes the upper triangle

➥ load imbalance between the threads

➥ barrier at the end of the loop results in waiting time

➥ But: the second loop does not depend on the first one

➥ i.e., the computation can be started, before the first loop has

been executed completely

➥ the barrier at the end of the first loop can be removed

➥ option nowait

➥ run time with 2 threads only 4.8 s instead of 7.2 s

3.4.5 Barrier ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 258

Example ...

➥ Executions of the program:

Loop 1

Loop 1

Loop 2
Loop 2

Loop 1

Loop 1

Loop 2
Loop 2

Without nowait With nowait

Thread 2Thread 1Thread 2Thread 1

Barrier

Barrier

3.4 OpenMP Synchronization ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 259

3.4.6 Execution using a single thread

#pragma omp single #pragma omp master

Statement / Block Statement / Block

➥ Block is only executed by a single thread

➥ No synchronization at the beginning of the directive

➥ single directive:

➥ first arriving thread will execute the block

➥ barrier synchronization at the end (unless: nowait)

➥ master directive:

➥ master thread will execute the block

➥ no synchronization at the end

259-1

Notes for slide 259:

Strictly speaking, the single directive is no Synchronization, but a directive for work
distribution. It distributes the work in such a way, that the block below the directive is
executed by the first thread arriving at the directive. Thus, the directive can be used to
implement task parallelism, e.g.:

#pragma omp parallel

{

#pragma omp single nowait

firstTask();

#pragma omp single nowait

secondTask();

}

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) xiii

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: January 13, 2025

Parallel Processing

Winter Term 2024/25

25.11.2024

3.5 Task Parallelism with OpenMP

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 260

3.5.1 The sections Directive: Parallel Code Regions

<clause_list>][
{

#pragma omp section

}
...
Statement / Block

#pragma omp section
Statement / Block

#pragma omp sections

➥ Each section will be executed exactly once by one thread

➥ scheduling is implementation-defined (gcc: dynamic)

➥ At the end of the sections directive, a barrier synchronization is

performed

➥ unless the option nowait is specified

3.5.1 The sections directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 261

Example: independent code parts

double a[N], b[N];

int i;

#pragma omp parallel sections private(i)

#pragma omp section

a[i] = 100;

#pragma omp section

b[i] = 200;
}

Important!!

{

for (i=0; i<N; i++)

for (i=0; i<N; i++)

➥ The two loops can be executed concurrently to each other

➥ Task partitioning

3.5.1 The sections directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 262

Example: scheduling / influence of nowait (☞ 03/sections.cpp)

void task(int no, int delay) {

int thread = omp_get_thread_num();

#pragma omp critical

cout << "Thread " << thread << ", Section " << no << " start\n";

usleep(delay);

#pragma omp critical

cout << "Thread " << thread << ", Section " << no << " end\n";

}

main() {

#pragma omp parallel

{

#pragma omp sections // ggf. nowait

{

#pragma omp section

task(1, 200000);

3.5.1 The sections directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 263

Example: scheduling / influence of nowait ...

#pragma omp section

task(2, 1000000);

}

#pragma omp sections

{

#pragma omp section

task(3, 300000);

#pragma omp section

task(4, 200000);

#pragma omp section

task(5, 200000);

}

}

}

3.5.1 The sections directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 264

Example: scheduling / influence of nowait ...

➥ Executions of the program without nowait option:

Sect. 1 Sect. 2Sect. 1 Sect. 2

Sect. 3
Sect. 4

Sect. 5

Sect. 3
Sect. 4 Sect. 5

Thread 2Thread 1 Thread 3Thread 2Thread 1

Barrier

Barrier Barrier

3.5.1 The sections directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 265

Example: scheduling / influence of nowait ...

➥ Executions of the program with nowait option:

Sect. 3

Sect. 4

Sect. 5

Sect. 4

Sect. 3

Sect. 5

Thread 2Thread 1 Thread 3Thread 2

Sect. 2 Sect. 2

Thread 1

Sect. 1 Sect. 1

Barrier

Barrier

3.5 Task Parallelism with OpenMP ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 266

3.5.2 The task Directive: Explicit Tasks

<clause_list>][#pragma omp task

Statement/Block

➥ Creates an explicit task from the statement / the block

➥ Tasks will be executed by the available threads (work pool model)

➥ Options private, firstprivate, shared determine, which
variables belong to the data environment of the task

➥ the default for local variables is firstprivate, i.e., local
variables declared outside but used inside the block are the
task’s input arguments

➥ Option if allows to determine, when an explicit task should be
created

3.5.2 The task Directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 267

Example: parallel quicksort (☞ 03/qsort.cpp)

void quicksort(int *a, int lo, int hi) {
...
// Variables are ’firstprivate’ by default

#pragma omp task if (j-lo > 10000)
quicksort(a, lo, j);
quicksort(a, i, hi);

}

int main() {
...
#pragma omp parallel
#pragma omp single nowait // Execution by a single thread

quicksort(array, 0, n-1);
// Before the parallel region ends, we wait for the termination of all threads

267-1

Notes for slide 267:

In the task construct, global and static variables, as well es objects allocated on the
heap are shared by default. For global and static variables, this can be changed using
the threadprivate directive. Otherwise, all other variables used in the affected code
block are firstprivate by default, i.e., their value is copied when the task is created.
However, the shared attribute is inherited from the lexically enclosing constructs. For
example:

int glob;

void example() {

int a, b;

#pragma omp parallel shared(b) private(a)

{

int c;

#pragma omp task

{

int d;

// glob: shared

// a: firstprivate

// b: shared

// c: firstprivate

// d: private

3.5.2 The task Directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 268

Task synchronization

#pragma omp taskwait #pragma omp taskgroup
{

Block
}

➥ taskwait: waits for the completion of all direct subtasks of the

current task

➥ taskgroup: at the end of the block, the program waits for all tasks,

which have been created within the block by the current task or

one of its subtasks

➥ available since OpenMP 4.0

➥ caution: older compilers ignore this directive!

3.5.2 The task Directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 269

Example: parallel quicksort (☞ 03/qsort.cpp)

➥ Imagine the following change when calling quicksort:

#pragma omp parallel
{

#pragma omp single nowait // Execution by exactly one thread

quicksort(array, 0, n-1);
checkSorted(array, n); // Verify that array is sorted

}

➥ Problem:

➥ quicksort() starts new tasks

➥ tasks are not yet finished, when quicksort() returns

3.5.2 The task Directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 270

Example: parallel quicksort ...

➥ Solution 1:

← wait for the created task

void quicksort(int *a, int lo, int hi) {
...
#pragma omp task if (j-lo > 10000)
quicksort(a, lo, j);
quicksort(a, i, hi);
#pragma omp taskwait

}

➥ advantage: subtask finishes, before quicksort() returns

➥ necessary, when there are computations after the recursive
call

➥ disadvantage: relatively high overhead

270-1

Notes for slide 270:

In this example, an additional overhead is created by always waiting for the subtasks
after the recursive calls, even if none were generated (because j-lo <= 10000). For
the taskwait directive, there is no if option, so you might need to include a condi-
tional statement here.

3.5.2 The task Directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 271

Example: parallel quicksort ...

➥ Solution 2:

← wait for all tasks created in the block

#pragma omp parallel
{

#pragma omp taskgroup
{

#pragma omp single nowait // Execution by exactly one thread

quicksort(array, 0, n-1);
}
checkSorted(array, n);

}

➥ advantage: only wait at one single place

➥ disadvantage: semantics of quicksort() must be very well

documented

3.5.2 The task Directive ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 272

Dependences between tasks (☞ 03/tasks.cpp)

➥ Option depend allows to specify dependences between tasks

➥ you must specify the affected variables (or array sections, if
applicable) and the direction of data flow

➥ Beispiel:

δ δ

δa

tt

δo

#pragma omp task shared(a) depend(out: a)
a = computeA();

#pragma omp task shared(b) depend(out: b)
b = computeB();

#pragma omp task shared(a,b,c) depend(in: a,b)
c = computeCfromAandB(a, b);

#pragma omp task shared(b) depend(out: b)
b = computeBagain();

➥ the variables a, b, and c must be shared in this case, since
they contain the result of the computation of a task

272-1

Notes for slide 272:

In the depend option, a dependency type is defined, which specifies the direction of the
data flow. Possible values are in, out, and inout.

➥ With in, the generated task will depend on all previously created “sibling” tasks
that specify at least one of the listed variables in a depend option of type out or
inout.

➥ With out and inout, the generated task will depend on all previously created
“sibling” tasks that specify at least one of the listed variables in a depend option of
type in, out, or inout.

Array sections can be specified using the notation:
<name> [[<lower-bound>] : [<length>]]

A missing lower bound is assumed to be 0, a missing length as the array length minus
lower bound.

3.6 Tutorial: Tools for OpenMP

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 273

3.6.1 Debugging

➥ There are only few debuggers that fully support OpenMP

➥ e.g., Totalview

➥ requires tight cooperation between compiler and debugger

➥ On Linux PCs:

➥ gdb and ddd allow halfway reasonable debugging

➥ they support multiple threads

➥ gdb: textual debugger (standard LINUX debugger)

➥ ddd: graphical front end for gdb

➥ more comfortable, but more “heavy-weight”

3.6.1 Debugging ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 274

➥ Prerequisite: compilation with debugging information

➥ sequential: g++ -g -o myProg myProg.cpp

➥ with OpenMP: g++ -g -fopenmp ...

➥ Limited(!) debugging is also possible in combination with

optimization

➥ however, the debugger may show unexpected behavior

➥ if possible: switch off the optimization

➥ g++ -g -O0 ...

3.6.1 Debugging ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 275

Important functions of a debugger (Examples for gdb):

➥ Start the programm: run arg1 arg2

➥ Set breakpoints on code lines: break file.cpp:35

➥ Set breakpoints on functions: break myFunc

➥ Show the procedure call stack: where

➥ Navigate in the procedure call stack: up bzw. down

➥ Show the contents of variables: print i

➥ Change the contents of variables: set variable i=i*15

➥ Continue the program (after a breakpoint): continue

➥ Single-step execution: step bzw. next

3.6.1 Debugging ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 276

Important functions of a debugger (Examples for gdb): ...

➥ Show all threads: info threads

➥ Select a thread: thread 2

➥ subsequent commands typically only affect the selected thread

➥ Source code listing: list

➥ Help: help

➥ Exit the debugger: quit

➥ All commands can also be abbreviated in gdb

3.6.1 Debugging ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 277

Sample session with gdb (sequential)

bsclk01> g++ -g -O0 -o ross ross.cpp ← Option -g for debugging
bsclk01> gdb ./ross

GNU gdb 6.6

Copyright 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public ...

(gdb) b main ← Set breakpoint on function main

Breakpoint 1 at 0x400d00: file ross.cpp, line 289.

(gdb) run 5 5 0 ← Start program with given arguments
Starting program: /home/wismueller/LEHRE/pv/ross 5 5 0

Breakpoint 1, main (argc=4, argv=0x7fff0a131488) at ross.cpp:289

289 if (argc != 4) {

(gdb) list ← Listing around the current line
284

285 /*

286 ** Get and check the command line arguments

3.6.1 Debugging ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 278

287 */

288

289 if (argc != 4) {

290 cerr << "Usage: ross <size_x> <size_y> ...

291 cerr << " <size_x> <size_y>: size...

292 cerr << " <all>: 0 = compute one ...

293 cerr << " 1 = compute all ...

(gdb) b 315 ← Set breakpoint on line 315
Breakpoint 2 at 0x400e59: file ross.cpp, line 315.

(gdb) c ← Continue the program
Continuing.

Breakpoint 2, main (argc=4, argv=0x7fff0a131488) at ross.cpp:315

315 num_moves = Find_Route(size_x, size_y, moves);

(gdb) n ← Execute next source line (here: 315)
320 if (num_moves >= 0) {

(gdb) p num moves ← Print contents of num moves

$1 = 24

3.6.1 Debugging ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 279

(gdb) where ←Where is the program currently stopped?
#0 main (argc=4, argv=0x7fff0a131488) at ross.cpp:320

(gdb) c ← Continue program
Continuing.

Solution:

...

Program exited normally.

(gdb) q ← exit gdb
bsclk01>

3.6.1 Debugging ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 280

Sample session with gdb (OpenMP)

bslab03> g++ -fopenmp -O0 -g -o heat heat.cpp solver-jacobi.cpp
bslab03> gdb ./heat

GNU gdb (GDB) SUSE (7.5.1-2.1.1)

...

(gdb) run 500

...

Program received signal SIGFPE, Arithmetic exception.

0x0000000000401711 in solver._omp_fn.0 () at solver-jacobi.cpp:58

58 b[i][j] = i/(i-100);

(gdb) info threads
Id Target Id Frame

4 Thread ... (LWP 6429) ... in ... at solver-jacobi.cpp:59

3 Thread ... (LWP 6428) ... in ... at solver-jacobi.cpp:59

2 Thread ... (LWP 6427) ... in ... at solver-jacobi.cpp:63

* 1 Thread ... (LWP 6423) ... in ... at solver-jacobi.cpp:58

(gdb) q

3.6.1 Debugging ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 281

Sample session with ddd

Menu
Current
position

Breakpoint

Listing
(commands via

right mouse button)

Input/Output
(also input of gdb commands)

3.6 Tutorial: Tools for OpenMP ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 282

3.6.2 Performance Analysis

➥ Typically: instrumentation of the generated executable code
during/after the compilation

➥ insertion of code at important places in the program

➥ in order monitor relevant events
➥ e.g., at the beginning/end of parallel regions, barriers, ...

➥ during the execution, the events will be

➥ individually logged in a trace file (Spurdatei)

➥ or already summarized into a profile

➥ Evaluation is done after the program terminates

➥ c.f. Section 2.8.6

➥ Example: Scalasca

➥ see https://www.scalasca.org/scalasca/software

https://www.scalasca.org/scalasca/software

282-1

Notes for slide 282:

If you want to use Scalasca, there are two possibilities:

➥ You can download an appliance for Oracle VirtualBox, which includes Linux, g++
compilers, OpenMP, MPI, Scalasca and Visual Studio Code with g++ plugins (see
https://moodle.uni-siegen.de/mod/url/view.php?id=884597).

➥ You can use the script, which is provided on the course’s web page (see
https://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/

build-scalasca.sh) to download and build Scalasca on a Linux computer.

3.6.2 Performance Analysis ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 283

Performance analysis using Scalasca

➥ Compile the program:

➥ scalasca -instrument g++ -fopenmp ... barrier.cpp

➥ Execute the program:

➥ scalasca -analyze ./barrrier

➥ stores data in a directory scorep barrier 0x0 sum

➥ 0x0 indicates the number of threads (0 = default)

➥ directory must not yet exist; remove it, if necessary

➥ Interactive analysis of the recorded data:

➥ scalasca -examine scorep barrier 0x0 sum

https://moodle.uni-siegen.de/mod/url/view.php?id=884597
https://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/build-scalasca.sh
https://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/build-scalasca.sh

3.6.2 Performance Analysis ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 284

Performance analysis using Scalasca: Example from slide 255

3.6.2 Performance Analysis ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 285

Performance analysis using Scalasca: Example from slide 255 ...

➥ In the example, the waiting time at barriers in the first loop can be

reduced drastically by using the option nowait:

285-1

Notes for slide 285:

When interpreting the times indicated by Scalasca, the following must be observed:

➥ The metric displayed for an entry (here: time) always excludes the visible sub-
entries. When, e.g., the item “7.97 Execution” in the Metric tree shown in the
screen dump is folded (i.e., no longer visible), Scalasca displays “8.12 Execution”
(0.15s execution time for OMP + 7.97s for the remaining execution).

In the example, you can see that the nowait option has made the time for OpenMP
(synchronization) significantly smaller (0.15s instead of 5.62s), but the pure exe-
cution time has slightly increased (from 7.21s to 7.97s), possibly because of com-
petition for the memory.

➥ The time that Scalasca displays is the summed execution time of all threads,
including waiting times. In the example, the program actually terminated after
1.3s.

➥ Scalasca still shows a load imbalance (Computational imbalance), since, e.g.,
thread 7 still calculates much more in the first loop than thread 1. Scalasca is not
able to recognize that this imbalance exactly cancels the corresponding imbalance
in the second loop.

3.7 Exercise: A Solver for the Sokoban Game
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 286

Background

➥ Sokoban: japanese for “warehouse keeper”

➥ Computer game, developed in 1982 by Hiroyuki Imabayashi

➥ Goal: player must push all objects (boxes) to the target positions
(storage locations)

➥ boxes can only be pushed, not pulled

➥ only one box can be pushed at a time

3.7 Exercise: A Solver for the Sokoban Game ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 287

How to find the sequence of moves?

➥ Configuration: state of the play field

➥ positions of the boxes

➥ position of the player (connected component)

➥ Each configuration has a set of
successor configurations

➥ Configurations with successor relation
build a directed graph

➥ not a tree, since cycles are possible!

➥ Wanted: shortest path from the root of
the graph to the goal configuration

➥ i.e., smallest number of box
pushes

3.7 Exercise: A Solver for the Sokoban Game ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 288

How to find the sequence of moves? ...

➥ Two alternatives:

➥ depth first search

➥ problems:

➥ cycles

➥ handling paths with dif-
ferent lengths

➥ breadth first search

➥ problems:

➥ reconstruction of the

path to a node

➥ memory requirements

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (11/15) xiv

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: January 13, 2025

Parallel Processing

Winter Term 2024/25

02.12.2024

3.7 Exercise: A Solver for the Sokoban Game ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 289

Backtracking algorithm for depth first search:

DepthFirstSearch(conf): // conf = current configuration
append conf to the soultion path
if conf is a solution configuration:

found the solution path
return

if depth is larger than the depth of the best solution so far:
remove the last element from the solution path
return // cancel the search in this branch

for all possible successor configurations c of conf :
if c has not yet been visited at a smaller or equal depth:

remember the new depth of c
DepthFirstSearch(c) // recursion

remove the last element from the solution path
return // backtrack

3.7 Exercise: A Solver for the Sokoban Game ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 290

Algorithm for breadth first search:

BreadthFirstSearch(conf): // conf = start configuration
add conf to the queue at depth 0
depth = 1;
while the queue at depth depth-1 is not empty:

for all configurations conf in this queue:
for all possible successor configurations c of conf :

if configuration c has not been visited yet:
add the configuration c with predecessor conf to the

set of visited configurations and to the queue for
depth depth

if c is a solution configuration:
determine the solution path to c
return // found a solution

depth = depth+1
return // no solution

3.7 Exercise: A Solver for the Sokoban Game ...
(Animated slide)

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 291

Example for the backtracking algorithm

Possible move

Chosen move

Configuration with possible moves

3 Parallel Programming with Shared Memory ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 292

3.8 Excursion: Lock-Free Data Structures

➥ Goal: Data structures (typically collections) without mutual

exclusion

➥ more performant, no danger of deadlocks

➥ Lock-free: under any circumstances at least one of the threads

makes progress after a finite number of steps

➥ in addition, wait-free also prevents starvation

➥ Typical approach:

➥ use atomic read-modify-write instructions instead of locks

➥ in case of conflict, i.e., when there is a simultaneous change

by another thread, the affected operation is repeated

3.8 Excursion: Lock-Free Data Structures ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 293

Example: appending to an array (at the end)

int fetch_and_add(int *addr, int val) {

int tmp = *addr;

*addr += val;

return tmp;

}

Data buffer[N]; // Buffer array

int wrPos = 0; // Position of next element to be inserted

void add_last(Data data) {

int wrPosOld = fetch_and_add(&wrPos, 1);

buffer[wrPosOld] = data;

}

Atomic!

3.8 Excursion: Lock-Free Data Structures ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 294

Example: prepend to a linked list (at the beginning)

bool compare_and_swap(void **addr, void *exp, void *newVal) {
if (*addr == exp) {

*addr = newVal;
return true;

}
return false;

}

Element* firstNode = NULL; // Pointer to first element

void add_first(Element* node) {
Element* tmp;
do {
tmp = firstNode;
node->next = tmp;

} while (!compare_and_swap(&firstNode, tmp, node));
}

Atomic!

3.8 Excursion: Lock-Free Data Structures ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 295

➥ Problems

➥ re-use of memory addresses can result in corrupt data
structures
➥ assumption in linked list: if firstNode is still unchanged,

the list was not accessed concurrently

➥ thus, we need special procedures for memory deallocation

➥ There is a number of libraries for C++ and also for Java

➥ C++: e.g., boost.lockfree, libcds, Concurrency Kit, liblfds

➥ Java: e.g., Amino Concurrent Building Blocks, Highly Scalable
Java

➥ Compilers usually offer read-modify-write operations, e.g.:

➥ C++ type: std::atomic<T>

➥ gcc/g++: built-in functions __sync_...() or __atomic_...()

	3 Parallel Programming with Shared Memory
	3.1 OpenMP Basics
	3.1.1 The parallel directive
	3.1.2 Library routines

	3.2 Loop parallelization
	3.2.1 The for directive: parallel loops
	3.2.2 Parallelization of Loops
	3.2.3 Simple Examples
	3.2.4 Dependence Analysis in Loops

	3.3 Exercise: The Jacobi and Gauss/Seidel Methods
	3.4 OpenMP Synchronization
	3.4.1 Critical sections
	3.4.2 Atomic operations
	3.4.3 Reduction operations
	3.4.4 Execution in program order
	3.4.5 Barrier
	3.4.6 Execution using a single thread

	3.5 Task Parallelism with OpenMP
	3.5.1 The sections Directive: Parallel Code Regions
	3.5.2 The task Directive: Explicit Tasks

	3.6 Tutorial: Tools for OpenMP
	3.6.1 Debugging
	3.6.2 Performance Analysis

	3.7 Exercise: A Solver for the Sokoban Game
	3.8 Excursion: Lock-Free Data Structures

