Parallel Processing

Winter Term 2024/25

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: January 13, 2025

E*=="" Roland Wismiiller i
=.*..= Betriebssysteme / verteilte Systeme Parallel Processing (1/15)

Parallel Processing
Winter Term 2024/25

3 Parallel Programming with Shared Memory

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 195

3 Parallel Programming with Shared Memory ... "

Contents

= OpenMP basics

= | oop parallelization and dependeces

Exercise: The Jacobi and Gauss/Seidel Methods
OpenMP synchronization

Task parallelism with OpenMP

Tutorial: tools for OpenMP

Exercise: A solver for the Sokoban game

Excursion: Lock-Free and Wait-Free Data Structures

L 20 2NR 2NN 2N 2N /

Literature

= Wilkinson/Allen, Ch. 8.4, 8.5, Appendix C
= Hoffmann/Lienhart

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 196

3 Parallel Programming with Shared Memory ... "

Approaches to programming with threads

= Using (system) libraries
= Examples: POSIX threads, Intel Threading Building Blocks
(TBB)
= As part of a programming language
= Examples: Java threads (= BS_l), C++ threads (= 1.3)

= Using compiler directives (pragmas)
= Examples: OpenMP (= 3.1)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 197

3.1 OpenMP Basics ['

Background

= Thread libraries (for FORTRAN and C) are often too complex
(and partially system dependent) for application programmers
= Wish: more abstract, portable constructs

= OpenMP is an inofficial standard
= since 1997 by the OpenMP forum (www.openmp.org)

= API| for parallel programming with shared memory using
FORTRAN /C/C++
= source code directives
= |ibrary routines
= environment variables

= Besides parallel processing with threads, OpenMP also supports
SIMD extensions and external accelerators (since version 4.0)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 198

3.1 OpenMP Basics ... "

Parallelization using directives

= The programmer must specify

= which code regions should be executed in parallel
= where a synchronization is necessary

= This specification is done using directives (pragmas)
= gspecial control statements for the compiler
= unknown directives are ignored by the compiler

= Thus, a program with OpenMP directives can be compiled
= with an OpenMP compiler, resulting in a parallel program
= with a standard compiler, resulting in a sequential program

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 199

3.1 OpenMP Basics ... "

Parallelization using directives ...

= Goal of parallelizing with OpenMP:

= distribute the execution of sequential program code to several
threads, without changing the code

= dentical source code for sequential and parallel version

= Three main classes of directives:
= directives for creating threads (parallel, parallel region)

= within a parallel region: directives to distribute the work to the
individual threads

= data parallelism: distribution of loop iterations (for)

= task parallelism: parallel code regions (sections) and
explicit tasks (task)

= directives for synchronization

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 200

3.1 OpenMP Basics ... "

Parallelization using directives: discussion

= Compromise between

= completely manual parallelization (as, e.g., with MPI)
= automatic parallelization by the compiler

= Compiler takes over the organization of the parallel tasks
= thread creation, distribution of tasks, ...

= Programmer takes over the necessary dependence analysis
= which code regions can be executed in parallel?
= ecnables detailed control over parallelism
= put: programmer is responsible for correctness

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 201

3.1 OpenMP Basics ... "

Compiling and executing OpenMP programs
= Compilation with gcc (g++)

= typical call: g++ -fopenmp myProg.cpp -o myProg
= OpenMP 4.0 is supported since gcc 4.9

= Execution: identical to a sequential program
= e.0.: ./myProg
= (maximum) number of threads can be specified in environ-
ment variable OMP_NUM_THREADS
= @©.g.. export OMP_NUM_THREADS=4

= specification holds for all programs started in the same
shell

= also possible: temporary (re-)definition of OMP_NUM_THREADS
= g©.g.. OMP_NUM_THREADS=2 ./myProg

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 202

3.1.1 The parallel directive d

An example (= 03/firstprog.cpp)

Program

main() {
cout << "Serial\n";

{

cout << "Parallel\n";

}

cout << "Serial\n";

}

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 203

3.1.1 The parallel directive d

An example (= 03/firstprog.cpp)

Program

main() {
cout << "Serial\n";
#pragma omp parallel

{

cout << "Parallel\n";

}

cout << "Serial\n";
}
Compilation

g++ —fopenmp —o tst
firstprog.cpp

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 203

3.1.1 The parallel directive |

An example (= 03/firstprog.cpp)

Program Execution
main() { % export OMP_NUM_THREADS=2
cout << "Serial\n"; % ./firstprog
#pragma omp parallel Serial
{ Parallel
cout << "Parallel\n"; Parallel
} Serial
cout << "Serial\n";
} % export OMP_NUM_THREADS=3
% ./firstprog
Compilation Serial
Parallel
g++ —fopenmp —o tst Parallel
firstprog.cpp Parallel
Serial

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 203

3.1.1 The parallel directive ...

Execution model: fork/join

cout << "Serial\n";

#pragma omp paraliel

Fork

cout << "Par... cout

«< "Par...

cout << "Serial\n";

Join

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Parallel Processing (8/15)

204

3.1.1 The parallel directive ... "

Execution model: fork/join ...
= Program starts with exactly one master thread
= When a parallel region (#pragma omp parallel) is reached,
additional threads will be created (fork)
= environment variable OMP_NUM_THREADS specifies the total
number of threads in the team
= The parallel region is executed by all threads in the team
= at first redundantly, but additional OpenMP directives allow a
partitioning of tasks
= At the end of the parallel region:
= all threads terminate, except the master thread

= master thread waits, until all other threads have terminated
(join)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 205

3.1.1 The parallel directive ... ‘I

Syntax of directives (in C/ C++)

w #pragma omp <directive> [<clause_list>]
w <clause_list>: List of options for the directive

= Directive only affects the immediately following statement or the
immediately following block, respectively
= static extent (statischer Bereich) of the directive

#pragma omp parallel
cout << "Hello\n"; // parallel
cout << "Hi there\n"; // sequential again

= dynamic extent (dynamischer Bereich) of a directive

= also includes the functions being called in the static extent
(which thus are also executed in parallel)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 206

3.1.1 The parallel directive ... "

Shared and private variables

= For variables in a parallel region there are two alternatives

= the variables is shared by all threads (shared variable)

= all threads access the same variable
- usually, some synchronization is required!

= ecach thread has its own private instance (private variable)

= can be initialized with the value in the master thread
= value is dropped at the end of the parallel region

= For variables, which are declared within the dynamic extent of a
parallel directive, the following holds:
= |ocal variables are private

= static variables and heap variables (new) are shared

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 207

3.1.1 The parallel directive ... "

Shared and private variables ...

= [For variables, which have been declared before entering a
parallel region, the behavior can be specified by an option of the
parallel directive:
= private (<variable_list>)

= private variable, without initialization
w firstprivate (<variable_list>)

= private variable
= |nitialized with the value in the master thread

w shared (<variable_list>)

= shared variable
w shared is the default for all variables

208

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15)

3.1.1 The parallel directive ... ‘I

Shared and private variables: an example (= 03/private.cpp)

Each thread has a (non-initialized) copy of | Each thread has an
: o o _ . initialized copy of |
e is0 s -1xea N Do
#pragma omp omp parallel private(i) firstprivate(j)

{

int h = random() % 100; ==—— his private
CO'llt << I|P: i=|| << i << n , j=l| << J‘

<< ", k=" << k << ", h=" << h << "\n";
i++; j++; kt+; = Accesses to k
} usually should be
cout << "S: i=" << i << ", j=" <<] synchronized!

<< n, k=" << k << n\nn;

Output (with 2 threads):
P: 1=1028465, j=1, k=
P: i=-128755, j=1, k
S: i=0, j=1, k=4

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 209

3.1.2 Library routines "

= OpenMP also defines some library routines, e.g.:
= int omp_get_num_threads(): returns the number of threads
= int omp_get_thread_num(): returns the thread number
= petween 0 (master thread) and omp_get_num_threads()-1
= int omp_get_num_procs(): number of processors (cores)
= void omp_set_num_threads(int nthreads)

= defines the number of threads (maximum is
OMP_NUM_THREADS)

= double omp_get_wtime(): wall clock time in seconds
= for runtime measurements
w N addition: functions for mutex locks

= \When using the library routines, the code can, however, no longer
be compiled without OpenMP ...

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 210

3.1.2 Library routines ... ‘I

Example using library routines (= 03/threads. cpp)

#include <omp.h>

int me;

omp_set_num_threads (2); // use only 2 threads
#pragma omp parallel private(me)

{

me = omp_get_thread_num(); // own thread number (0 or 1)
cout << "Thread " << me << "\n'";

if (me == 0) // threads execute different code!
cout << "Here is the master thread\n";
else

cout << "Here is the other thread\n'";

+

= |n order to use the library routines, the header file omp.h must be
iIncluded

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 211

3.2 Loop parallelization "

Motivation

= |mplementation of data parallelism

= threads perform identical computations on different parts of
the data

= Two possible approaches:
= primarily look at the data and distribute them

= distribution of computations follows from that
- e.9., with HPF or MPI

= primarily look at the computations and distribute them

= computations virtually always take place in loops
(= loop parallelization)
= no explicit distribution of data

= for programming models with shared memory

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 212

3.2 Loop parallelization ... ‘I

3.2.1 The for directive: parallel loops

#pragma omp for [<clause_list>]
for(...) ...

= Must only be used within the dynamic extent of a parallel
directive

= Execution of loop iterations will be distributed to all threads
= |oop variable automatically is private

= Only allowed for “simple” loops
= NO break Or return, integer loop variable, ...

= No synchronization at the beginning of the loop

= Barrier synchronization at the end of the loop
= unless the option nowait is specified

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 213

3.2.1 The for directive: parallel loops ... ‘I

Example: vector addition

double a[N], b[N], c[N];

Short form for
int i / #pragma omp parallel

#pragma omp parallel for {

for (i=0; i<N; i++) { #pragma omp for
a[i] = bfi] + c[i]; .

}

= Each thread processes a part of the vector
= data partitioning, data parallel model

= Question: exactly how will the iterations be distributed to the
threads?
= can be specified using the schedule option

= default: with n threads, thread 1 gets the first n-th of the
iterations, thread 2 the second n-th, ...

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 214

3.2.1 The for directive: parallel loops ... "

Scheduling of loop iterations
w Option schedule(<class> [, <size>])

= Scheduling classes:

= static: blocks of given size (optional) are distributed to the
threads in a round-robin fashion, before the loop is executed

= dynamic: Iiterations are distributed in blocks of given size,
execution follows the work pool model

= Dbetter load balancing, if iterations need a different amount
of time for processing

w guided: like dynamic, but block size is decreasing
exponentially (smallest block size can be specified)

= pbetter load balancing as compared to equal sized blocks
= auto: determined by the compiler / run time system
= runtime: Specification via environment variable

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 215

3.2.1 The for directive: parallel loops ... "

Scheduling example(= 03/1loops.cpp)
int i, j;
double Xx;

#pragma omp parallel for private(i,j,x) schedule(runtime)
for (i=0; i<40000; i++) {
x = 1.2;
for (j=0; j<i; j++) { // triangular loop
x = sqrt(x) * sin(x*x);

+
+

= Scheduling can be specified at runtime, e.g.:
= export OMP_SCHEDULE="static,10"

= Useful for optimization experiments

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 216

3.2.1 The for directive: parallel loops ... "

Scheduling example: results

= Runtime with 4 threads on the lab computers:

OMP_SCHEDULE | "static" | "static,1" | "dynamic" | "guided"
Time 3.1s 1.9s 1.8s 1.8s

= | oad imbalance when using "static"
= thread 1:i=0..9999, thread 4: i=30000..39999

= "static,1" and "dynamic" use a block size of 1
= ecach thread executes every 4th iteration of the i loop
= can be very inefficient due to caches (false sharing, = 5.1)
= remedy: use larger block size (e.g.: "dynamic,100")

= "guided" often is a good compromize between load balancing
and locality (cache usage)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 217

3.2.1 The for directive: parallel loops ... "

Shared and private variables in loops

= The parallel for directive can be supplemented with the
options private, shared and firstprivate (see slide 207 ff.)

= |n addition, there is an option lastprivate
= private variable

= after the loop, the master thread has the value of the last
iteration

= Example:
int i = O;
#pragma omp parallel for lastprivate(i)
for (i=0; i<100; i++) {

+

std::cout << "i=" << 1 << std::endl; // printsthe value 100

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 218

3.2.2 Parallelization of Loops "

When can a loop be parallelized?

for(i=1;i<N;i++) for(i=1;i<N;i++) for(i=0;i<N;i++)
a[i] = ali] afi] = a[i-1] a[i] = a[i+1]
+ b[i-1]; + b[i]; + b[i];

= QOptimal: independent loops (forall loop)
= |00p iterations can be executed concurrently without any
synchronization
= there must not be any dependeces between statements in
different loop iterations

= (equivalent: the statements in different iterations must fulfill the
Bernstein conditions)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 219

3.2.2 Parallelization of Loops "

When can a loop be parallelized?

for(i=1;I<N;i++) for(i=1;i<N;i++) for(i=0;I1<N;i++)
afi] = ali] afi] = a[i-1] afi] = a[i+1]
+ b[I-1]; + bli]; + bli];
No dependence True dependence

= QOptimal: independent loops (forall loop)
= |00p iterations can be executed concurrently without any
synchronization
= there must not be any dependeces between statements in
different loop iterations

= (equivalent: the statements in different iterations must fulfill the
Bernstein conditions)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 219

3.2.2 Parallelization of Loops ... "

Handling of data dependences in loops

= Anti and output dependences:

= can always be removed, e.g., by consistent renaming of
variables

= in the previous example:

for(i=0;I<N;i++)
afi] = a[i+1] + b[i];

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 220

3.2.2 Parallelization of Loops ... "

Handling of data dependences in loops

= Anti and output dependences:

= can always be removed, e.g., by consistent renaming of
variables

= in the previous example:

for(i=0;I<N;i++)

afi] = [i+3pR+ bfif

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 220

3.2.2 Parallelization of Loops ... "

Handling of data dependences in loops

= Anti and output dependences:

= can always be removed, e.g., by consistent renaming of
variables

= in the previous example:
for(i=1;i<=N;i++)
a2[i] = ali];

for(i=0;I<N;i++)

afi] = [i+3pR+ bfif

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 220

3.2.2 Parallelization of Loops ... "

Handling of data dependences in loops

= Anti and output dependences:

= can always be removed, e.g., by consistent renaming of
variables

= in the previous example:
#pragma omp parallel

#pragma omp for
for(i=1;i<=N;i++)
a2[i] = ali];
#pragma omp for
for(i=0;I<N;i++)
} all] = [1I+2p+ b[i];

= the barrier at the end of the first loop is necessary!

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 220

3.2.2 Parallelization of Loops ... "

Handling of data dependences in loops ...

= True dependence:
= introduce proper synchronization between the threads

= e.g., using the ordered directive (= 3.4):
#pragma omp parallel for ordered
for (i=1; i<N; i++) {

// long computation of bJi]

#pragma omp ordered

alil = ali-1] + bl[i];
+

= disadvantage: degree of parallelism often is largely reduced

= sometimes, a vectorization (SIMD) is possible (= ??), e.g.:
#pragma omp simd safelen(4)
for (i=4; i<N; gui++)
alil] = ali-4] + blil;

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 221

3.2.3 Simple Examples ‘I

Matrix addition

double a[N][N];
double b[N][N];
Int i,);
for (i=0; I<N; i++) {
for (j=0; j<N; j++) {
afi]i] += b[i]0];

E*T5="" Roland Wismdiller .
ZI5_I= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 222

3.2.3 Simple Examples

Matrix addition

double a[N][N];
double b[N][N];
Nt i,j;
for (i=0; I<N; i++) {
for (j=0; j<N; j++) {
| Celli] += biIg; >
} 7
No dependences in |’ loop:
— b’ is read only
— Elements of 'a’ are always

read in the same '’ iteration,
in which thay are written

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Parallel Processing (8/15)

222

3.2.3 Simple Examples

Matrix addition

double a[N][N];

double b[N][N];

Int i,j;

for (i=0; I<N; i++) {
for (j=0; j<N; j++) {

| Call = bl >
} A
No dependences in |’ loop:
— b’ is read only
— Elements of 'a’ are always

read in the same '’ iteration,
in which thay are written

double a[N][N];

double b[N][N];

Int i,

for (I=0; I<N; i++) {
#pragma omp parallel for
for (j=0; J<N; J++) {

a[i]li] += bOjdl;
y e

7

~

Inner loop can be
executed in parallel

-

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Parallel Processing (8/15) 222

3.2.3 Simple Examples ...

Matrix addition

double a[N][N];
double b[N][N];
Inti,j;

for (i=0; i<N: i++) {

r (J=0; J<N; J++) {
alilj] += b[]Ql;

} 7
No dependences in ‘i’ loop:
— b’ is read only
— Elements of 'a’ are always
read in the same i’ iteration,
iIn which they are written

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Parallel Processing (8/15)

223

3.2.3 Simple Examples ... ‘I

Matrix addition

double a[N][N]; double a[N][N];
double b[N][N]; double b[N][N]
int i,j ntLy

#pragma omp parallel for
for (i=0; I<N; i++) { prag PP

private())
r(=0; J<N; J++) { for (i=0; i<N; i++) {
alil[] += bIL; > for (=0; j<N; ++) {
afi]j] += b{iQ]l;

} — } IR 4
No dependences in ‘i’ loop: e
— b’ is read only g

-~ " OQuter loop can be

— Elements of 'a’ are always executed in parallel

read in the same i’ iteration,
in which they are written Advantage: less overhead!

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 223

3.2.3 Simple Examples ... ‘I

Matrix multiplication

double a[N][N], b[N][N], c[N][N];
Int 1,],k;
for (I=0; I<N; i++) {
for (j=0; j<N; j++) {
cfill] = 0;
for (k=0; k<N ktir)_
c[iji] = cllb] + afifik] * blk]l;
}

} No dependences in the i’ and ’j’ loops

True dependece in the 'k’ loop

= Both the i and the j loop can be executed in parallel

= Usually, the outer loop is parallelized, since the overhead is lower

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 224

3.2.3 Simple Examples ...

Removing dependences

double a[N], b[N];

INt i;

double val = 1.2;

for (I=1; i<N; i++) {
b[i—1] = a[i] * a]l];

a[i—-1] = val;
}
a[i—-1] = b[O];

Z5F.2F Betriebssysteme / verteilte Systeme

Parallel Processing (8/15)

225

3.2.3 Simple Examples ... ‘I

Removing dependences

double a[N], b[N];
INt i;

double val = 1.2;
for (I=1; i<N; i+

b[i-1] =
a[i—1] = val,
}
a[i—-1] = b[O];

Anti depend. between iterations

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 225

3.2.3 Simple Examples ...

Removing dependences

double a[N], b[N];
Int i;

double val = 1.2,
for (i=1; i<N; i+

afi—-1] = val,

}
a[i—-1] = b[0O];

Anti depend. between iterations

True dependece between
loop and environment

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Parallel Processing (8/15)

225

3.2.3 Simple Examples ... ‘I

Removing dependences

double a[N], b[N];

Nt I;

double val = 1.2;

for (i=1; i<N; i+3Y7]
bli~1] = i * alil;_
ali-1] = val; -~

\

afi-11 = b[0];

Anti depend. between iterations

True dependece between
loop and environment

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 225

3.2.3 Simple Examples ... ‘I

Removing dependences

double a[N], b[N];

Nt I;

double val = 1.2;

for (i=1; i<N; i+3Y7]
bli~1] = i * alil;_
a[\il~11: val; -

} o<l

a[i-11= b[o];"

Anti depend. between iterations

True dependece between
loop and environment

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 225

3.2.3 Simple Examples ... ‘I

Removing dependences

double a[N], b[N] , a2[N] ;
Int i
double a[N], b[N]; double val = 1.2;

inti: #pragma omp parallel

double val =12

for (i=1; i<N; i+3){ ,
b[i-1] = pffi* alif;

#pragma omp for
for (i=1; I<N; I++)

ﬁl> a2[i] = a[il;

#pragma omp for

afi=1] = val;-” lastprivate(i)
} /)a’\ foréi[_:ll;]i<N; E_J]r+)zl i ,
g o i - I=1ll=alll *a[l];
ali-11= blo]; ali-1] = val
a[i—1] = b[0O];

Anti depend. between iterations ——== Renaming + barrier

True dependece between

_ ——= lastprivate(i) + barriers
loop and environment

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 225

3.2.4 Dependence Analysis in Loops [I

Direction vectors

= |s there a dependence within a single iteration or between
different iterations?

for (i=0; i<N; i++) {
S1: ali] = b[i] + c[i];
S2: d[i]=a[i] *5;

}

for (i=1; i<N; i++) {
S1: ali] = b[i] + cJi];
S2: d[i] = a[i-1] * 5;

}

for (i=1; i<N; i++) {

for (j=1; j<N; j++) {

S1: alil[j] = bIil[i] + 2;
S2: } b[i]i] = a[i-1][j—1] — b[i]{];

}

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 226

3.2.4 Dependence Analysis in Loops

Direction vectors

= |s there a dependence within a single iteration or between
different iterations?

for 1=0; I<N; I++ t
(A S1 &) S2

. (@[i] =] + cIi 2
82 d[|] = ;h‘. Direction vector: /

S1 and S2 in same iteration
for (i=1; i<N; i++) {
S1: ali] = Dbl[i] + c]i];
S2: d[i]=a[i-1]*5;
}
for (i=1; i<N; i++) {
for (j=1;]<N; j++) {
S1: ali]ii] = b[0] + 2;
S2: } b[i]i] = afi-1][j-1] - b{i][];
}

=T===" Roland Wismdiller i
=.*..= Betriebssysteme / verteilte Systeme Parallel Processing (8/15)

3.2.4 Dependence Analysis in Loops

Direction vectors

= |s there a dependence within a single iteration or between
different iterations?

for 1=0; I<N; I++ t
(A S1 8l S2

. (@[i] =] + cIi 2
82 d[|] = ;h‘. Direction vector: /

S1 and S2 in same iteration

S1 in earlier iteration than S2

dfi] = afi-a] * 5; S1 6t(</)/82
Loop carried dependece

for (i=1; i<N; i++) {
for (j=1; j<N; j++) {
S1: alil[j] = bIil[i] + 2;
S2: b[il[i] = a[i-1][j-1] — b{i[j];
}
}

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15)

226

3.2.4 Dependence Analysis in Loops

Direction vectors

= |s there a dependence within a single iteration or between
different iterations?

for(i 0; I<N; I++) { 31 &, g2
alil = (] + c[|] /‘=>
82 d[|]—a[Direction vector:

S1 and S2 in same iteration

S1 in earlier iteration than S2

dfi] = afi-a] * 5; S1 6t(</)/82
Loop carried dependece

for (i=1; i<N; i++) {
for (j=1; J<N; J++){
S1: ali]i] = b[])
S2: bllh] =]U 1] bi][];
} S1 3L S2
}

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15)

226

3.2.4 Dependence Analysis in Loops

Direction vectors

= |s there a dependence within a single iteration or between
different iterations?

for 1=0; I<N; I++ t
(A S1 &) S2

. (@[i] =] + cIi 2
82 d[|] = ;h‘. Direction vector: /

S1 and S2 in same iteration

S1 in earlier it;ration than S2
t
S1 6(<) S2

S1 in earlier iteration of 1’
and ’j’ loop than S2

S1 5t(<,</)/ S2
S1 3L S2

=T===" Roland Wismdiller i
=.*..= Betriebssysteme / verteilte Systeme Parallel Processing (8/15)

226

3.2.4 Dependence Analysis in Loops ... "

Formal computation of dependences

= Basis: Look for an integer solution of a system of (in-)equations

= Example: Equation system:
for (i=O; i<10; 1++ { O < 7:1 < 10
for[.(j:é);.:Jlki; j++) o Ogiz < 10
ali*10+j] = ...; : :
.= aJ[i*20+j-1]; 0s<u
} 0 S J2 < 12
1 1021 +J1 = 2022 +J2 — 1

= Dependence analysis always is a conservative approximation!

= unknown loop bounds, non-linear index expressions, pointers
(aliasing), ...

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 227

3.2.4 Dependence Analysis in Loops ... "

Usage: applicability of code transformations

= Permissibility of code transformations depends on the (possibly)
present data dependences

= [E.g.: parallel execution of a loop is possible, if
= this loop does not carry any data dependence

= i.e., all direction vectors have the form (..., =,...) or
(ceeg Zyeeey %y ...) [red: considered loop]

= E.g.: loop interchange is permitted, if
= |oops are perfectly nested
= |oop bounds of the inner loop are independent of the outer loop
= no dependences with direction vector (..., <, >,...)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 228

3.2.4 Dependence Analysis in Loops ...

Example: block algorithm for matrix multiplication

DO I=1,N

DOJ=1,N

DOK=1,N
A(LJ)=A®1,3)+B(1,K)*C(K,J)

: DO I1=1,N
Strip |
mining DO IT = 1,N,IS

y \DOI=IT, MIN(N,T+IS-1)

DO IT = 1,N,IS
DO | = IT, MIN(N,IT+IS-1)

DO JT =1,N,JS

DO J = JT, MIN(N,JT+JS-1)
DO KT = 1,N,KS
DO K = KT, MIN(N,KT+KS-1)
A(1,9)=A(1,3)+B(1,K)*C(K,J)

DO IT = 1,N,IS
DO JT = 1,N,JS
DO KT = 1,N,KS
DO | = IT, MIN(N,IT+IS-1)
DO J = JT, MIN(N,JT+JS-1)
DO K = KT, MIN(N,KT+KS-1)
A(1,9)=A(1,3)+B(1,K)*C(K,J)

J Loop
Interchange

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Parallel Processing (8/15)

229

3.2.4 Dependence Analysis in Loops ... "

Example: loop splitting

= (Consider the following loop:
for (i=1; i<N-1; i++) {
ali]l = (c[i-1] + c[i+1])/2; /St
b[i] = al[i-1]; /| S2
+

= \We have S1 5f<) S2, which prevents parallelization of the loop
without synchronization

= However, since we do not have any dependence S2) S1,
loop splitting is permitted, which results in:
for (i=1; i<N-1; i++)
ali]l = (c[i-1] + cl[i+1]1)/2; // St
for (i=1; i<N-1; i++)
b[i] = al[i-1]; /| S2

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 230

3.2.4 Dependence Analysis in Loops ...

Example: loop splitting ...
= Execution of the original loop:
=1 =2 1=3 1=4 =5 - I=N-1

S1. 81 31 F91. 31 St

S2 S2 S2 S2 S2 S2
= Execution of the transformed loop:

=1 |=2 1=3 1=4 =5 - I=N-1

S1. o S1_ ¢ S1_ . S1_ S1_ S1
5 5 5 5 5
S2\\\\82\\\\82\\\\82\\\\82\\\\82

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15)

231

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ‘I

Numerical solution of the equations for thermal conduction

= (Concrete problem: thin metal plate
= given: temperature profile of the boundary
= wanted: temperature profile of the interior (at equilibrium)

= Approach:

= discretization: consider the temperature only at equidistant
grid points

= 2D array of temperature values

= jterative solution: compute ever more exact approximations

= new approximations for the temperature of a grid point:
mean value of the temperatures of the neighboring points

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 232

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... "

Numerical solution of the equations for thermal conduction ...

] —>
| [0 © © o © o o o o © o o o o o
® o o o o o o ° ’J]
e 6 06 06 06 06 06 0 0 0 0 o o o offlj]=025*(t)-1,]+t[i,j-1] +
© © o6 o o 0 0 0 0 o o o o o o + ti,j+1] + tfi+1,)])
Metal plate
£2===" Roland Wismiiller

ETE77% Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 233

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... "

Variants of the method

= Jacobi iteration

= to compute the new values, only the values of the last iteration
are used

= computation uses two matrices

w Gauss/Seidel relaxation

= to compute the new values, also some values of the current
iteration are used:

- t[e — 1,7] and t[z, 57 — 1]
= computation uses only one matrix
= ysually faster convergence as compared to Jacobi

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 234

Parallel Processing

Winter Term 2024/25

18.11.2024

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: January 13, 2025

E*T5="" Roland Wismdiller . T
ZI5_I= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) Xl

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... "

Variants of the method ...

Jacobi Gauss/Seidel
do { do {

for(i=1;i<N-1;i++) { for(i=1;i<N-1;i++) {

for(jJ=1;)]<N-1;j++) { for(J=1;)]<N-1;j++) {

b[i][j] = 0.25 * [])] = 0a25 *

} (a[i-1]j] + ...); } (afi-1][j] + ...);
} }
for(i=1;i<N—1;i++) { } until (converged);

for(j=1;j<N-1;j++) {
a[i]i] = b{1bl;
| }

} until (converged);

ET%=77T Roland Wismdiller .
ZI5_I= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 235

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Dependences in Jacobi and Gauss/Seidel
= Jacobi: only between the two 2 loops

= (Gauss/Seidel: iterations of the 2, 3 loop depend on each other

j=1 j=2 j=3 j=4 j=5 j=6 =7
| Sequential
execution
order

shows the loop
iterations, not
the matrix

i=7 o—>-o—>-0—po—>o0—>0—>o elements!

:

:

I The fi

I e figure
:

;

Parallel Processing (9/15) 236

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Dependences in Jacobi and Gauss/Seidel
= Jacobi: only between the two 2 loops

= (Gauss/Seidel: iterations of the 2, 3 loop depend on each other

j=1 =2 [=3 j=4 j=5 [=6 |=7

=1 = Sequential

i_o — execution
order

=3 —

=4 = The figure

i—5 — shows the loop

| iterations, not

=6 = the matrix

=7 = e b be > elements!

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 236

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Parallelisation of the Gauss/Seidel method

= Restructure the 2, 3 loop, such that the iteration space is traversed
diagonally

= no dependences between the iterations of the inner loop

= problem: varying degree of parallelism

237

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... "

Loop restructuring in the Gauss/Seidel method

= Row-wise traversal of the matrix:
for (i=1; i<n-1; i++) {
for (j=1; j<n-1; j++) {
alil[j] = ...;

= Diagonal traversal of the matrix (= 03/diagonal.cpp):
for (ij=1; ij<2*n-4; ij++) {
int ja = (ij <= n-2) 7?71 : ij-(n-3);
int je = (ij <= n-2) 7 ij : n-2;
for (j=ja; j<=je; j++) {
i = ij-j+1;

alil[j] = ...;

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 238

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Alternative parallelization of the Gauss/Seidel method

= Requirement: number of iterations is known in advance
= (or: we are allowed to execute a few more iterations after
convergence)
= Then we can use a pipeline-style parallelization
= synchronisation via ordered (= 3.4.4)

K—1 K K+1 K+2 e
TO Jurinl |%||||| T _T_T.O.'I.('
B
T1 I i| w0
{ A T
T2 / |||||-|}|{||||| T o T1K
T3 ||||—||||\N~\|||)7f|—|||||—>
/
lteration of outer lteration of Synchronisation
'do’ loop (index: k) 'i" loop
g = E{g{ﬁggsvs\/)ig[[girjrlllgr/ verteilte Systeme Parallel Processing (9/15) 239

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Alternative parallelization of the Gauss/Seidel method

= Requirement: number of iterations is known in advance

= (or: we are allowed to execute a few more iterations after
convergence)

= Then we can use a pipeline-style parallelization

= synchronisation via ordered (= 3.4.4)
k—1 K K+1 K+2

I v vare
I v s e S,
7)

|
1

- " - "
| |

-+ Q=

1

T3 |y||—||||\ﬂ~\|||ﬂ(|—|||||—>
/
lteration of outer lteration of Synchronisation
'do’ loop (index: k) 'i" loop

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 239

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... "

Resulis

= Speedup using g++ -0 on bslab10 in H-A 4111 (eps=0.001):

Jacobi Gauss/Seidel (diagonal)
Thr. ||500|700|1000 [2000 [4000 || 500 | 700 | 1000 | 2000 | 4000
1109|0909 09 |09|18|20|16 | 16 | 1.3
2 |[1.8]15]| 14 |14 |14 ||35[|3.7| 21 | 26 | 2.6
3 ||26|20| 16 | 16 | 16 ||4.0(|44| 25 | 2.7 | 3.1
4 11332317 |16 | 16 ||41]148]| 3.0 | 3.0 | 3.5

= Slight performance loss due to compilation with OpenMP

= Diagonal traversal in Gauss/Seidel improves performance

= High speedup with Gauss/Seidel at a matrix size of 700
= data size: ~ 8MB, cache size: 4MB per dual core CPU

£*5z=* Roland Wismdiller .
Z.¥..* Betriebssysteme / verteilte Systeme

Parallel Processing (9/15)

240

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Speedup on the HorUS cluster: Jacobi

(@R
S L -
O
()
(0]
o | -
7p
1000
10 500 1
g | 700]
6 B -
.l 2000)
4000
2 B -
O I I I I I I I
2 4 6 8 10 12 Threads
E*=="" Roland Wismidiller

ETE77% Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 241

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Speedup on the HorUS cluster: Gauss/Seidel (diagonal)

o

S L -

©

()]

()]

O L -

N

10 -

8 I _

6 _
4000

4 1000 7
2000

2 I 700 -
500

O]]]]]]]

2 4 6 8 10 12 Threads

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 242

3.3 Exercise: The Jacobi and Gauss/Seidel Methods ... ‘I

Speedup on the HorUS cluster: Gauss/Seidel (pipeline)

o
S L _
go)
(0]
(0]
o | _
0P
10 -
8 _
°or 1000]
4L - 4000
B 2000
B 700 _
2 —t : : l = + 500
O | | | | | | |
2 4 6 8 10 12 Threads
=*=="" Roland Wismdiiller

ETE77% Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 243

3.4 OpenMP Synchronization "

= When using OpenMP, the programmer bears full responsibility for
the correct synchronization of the threads!

= A motivating example:
int j = O;
#pragma omp parallel for
for (int i=1; i<N; i++) {
if (alil > aljl)
j =1

+

= when the OpenMP directive is added, does this code fragment
still compute the index of the largest element in j?

= the memory accesses of the threads can be interleaved in an
arbitrary order = nondeterministic errors!

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 244

3.4 OpenMP Synchronization ...

Synchronization in OpenMP
= Higher-level, easy to use constructs

= |mplementation using directives:
= critical: critical section
atomic: atomic operations
ordered: execution in program order
barrier: barrier

§ §F 5 5 8

flush: make the memory consistent
= memory barrier (= 2.4.2)

single and master: execution by a single thread
taskwait and taskgroup: wait for tasks (= 3.5.2)

= implicitly executed with the other synchronization directives

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15)

245

3.4 OpenMP Synchronization ... ‘I

3.4.1 Critical sections

#pragma omp critical [(<name>)]
Statement / Block

w Statement / block is executed under mutual exclusion

= |n order to distinguish different critical sections, they can be
assigned a name

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 246

3.4 OpenMP Synchronization ... "

3.4.2 Atomic operations

#pragma omp atomic [read \rite update capgture][seq_cst]
Statement / Block

= Statement or block (only with capture) will be executed atomically
= ysually by compiling it into special machine instrcutions

= (Considerably more efficient than critical section

= The option defines the type of the atomic operation:
= read /write: atomic read / write
= update (default): atomic update of a variable
= capture: atomic update of a variable, while storing the old or
the new value, respectively

= Option seq_cst: enforce memory consistency (f1lush)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 247

3.4.2 Atomic operations ... "

Examples

= Atomic adding:

#pragma omp atomic update
x += ali]l * aljl;

= the right hand side will not be evaluated atomically!

w Atomic fetch-and-add:

#pragma omp atomic capture
{ 0ld = counter; counter += size; }

= |nstead of +, all other binary operators are possible, too

= With OpenMP 4, an atomic compare-and-swap can not yet be
implemented
= use builtin functions of the compiler, if necessary

= (OpenMP 5.1 introduces a compare clause)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 248

3.4 OpenMP Synchronization ... ‘I

3.4.3 Reduction operations

= QOften loops aggregate values, e.g.:
Int a[N];
Int sum = 0O;
#pragma omp parallel for reduction(+: sum)
for (int i1=0; I<N; I++){
sum += ali];

T At the end of the loop, 'sum’

printf("sum=%d\n",sum); contains the sum of all elements

w reduction saves us a critical section

= each thread first computes its partial sum in a private variable
= after the loop ends, the total sum is computed

= |nstead of + isis also possible to use other operators:
- % & | ° &% || min max

= in addition, user defined operators are possible

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 249

3.4.3 Reduction operations ...

d

= |n the example, the reduction option transforms the loop like this:

Int a[N];
Int sum = O;
#pragma omp parallel

int Isum = 0O; // local partial sum
pragma omp for nowait —— No barrier at the end
for (int i=0; I<N; i++) { of the loop
Isum += ai];
}
pragma omp atomic
sum +=Isum; —= Add local partial sum
} to the global sum

printf("sum=%d\n",sum);

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15)

250

3.4 OpenMP Synchronization ... "

3.4.4 Execution in program order

#pragma omp for ordered
for(...) {
#pragma omp ordered
Statement / Block

}

= The ordered directive is only allowed in the dynamic extent of a
for directive with option ordered

= recommendation: use option schedule(static,1)
w Or schedule(static,n) with small n

= The threads will execute the instances of the statement / block
exacly in the same order as in the sequential program

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 251

3.4.4 Execution in program order ... "

Execution with ordered

#pragma omp for ordered lterations —»
for(iS:f;; I<N; i++) { @ 1 Y o (N

#pragma omp ordered

S2;

S3; S1 -

} S1 S
S2 .
s2_ |

S2 ‘
S3 '

3wl |

S3 S3 S2

S3
Barrier e e R .

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 252

3.4.4 Execution in program order ... "

Execution with ordered ...

= Since OpenMP 4.5: ordered also allows to explicitly specify
dependencies that must be met

= Example:

#pragma omp parallel for ordered(1)

for (int i=3; i<100; i++) A{
#pragma omp ordered depend(source)
alil = ...;
#pragma omp ordered depend(sink: i-3)

. = al[i-3];
by

= Argument of ordered: number of nested loops to be considered
= allows to specify dependencies in nested loops
- e.g.....(sink: i-1,7)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 253

3.4 OpenMP Synchronization ... "

3.4.5 Barrier

#pragma omp barrier

= Synchronizes all threads
= each thread waits, until all other threads have reached the
barrier
= |mplicit barrier at the end of for, sections, and single directives
= can be removed by specifying the option nowait

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 254

3.4.5 Barrier ... ‘I

Example (= 03/barrier.cpp)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

##define N 10000
float al[N] [N];

main() {
int 1, j;
#pragma omp parallel
{

int thread = omp_get_thread_num();
cout << "Thread " << thread << ": start loop 1\n";

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 295

3.4.5 Barrier ... ‘I

#pragma omp for private(i,j) //add nowait, as the case may be
for (i=0; i<N; i++) {
for (j=0; j<i; j++) {
alil [j] = sqrt(i) * sin(j*j);
by
by

cout << "Thread " << thread << ": start loop 2\n";
#pragma omp for private(i,j)
for (i=0; i<N; i++) {
for (j=i; j<N; j++) {
alil [j] = sqrt(i) * cos(j*j);
by
by
cout << "Thread " << thread << ": end loop 2\n";
by
by

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 256

3.4.5 Barrier ... "

Example ...

= The first loop processes the lower triangle of the matrix a, the
second loop processes the upper triangle
= |oad imbalance between the threads
= pbarrier at the end of the loop results in waiting time

= But: the second loop does not depend on the first one

= |.e., the computation can be started, before the first loop has
been executed completely

= the barrier at the end of the first loop can be removed
= option nowait
= run time with 2 threads only 4.8 s instead of 7.2 s

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 257

3.4.5 Barrier ... "

Example ...

= Executions of the program:

Without nowait With nowait
Thread 1 Thread 2 Thread 1 Thread 2
Loop 1 Loop 1
Loop 1 Loop 1
Loop 2
Loop 2 Loop 2
——————————

Loop 2
I

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 258

3.4 OpenMP Synchronization ... "

3.4.6 Execution using a single thread

#pragma omp single #pragma omp master
Statement / Block Statement / Block

= Block is only executed by a single thread

= NoO synchronization at the beginning of the directive

= single directive:
= first arriving thread will execute the block
= parrier synchronization at the end (unless: nowait)

w master directive:
w master thread will execute the block
= No synchronization at the end

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (9/15) 259

Parallel Processing

Winter Term 2024/25

25.11.2024

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: January 13, 2025

=T===" Roland Wismdiller i
=== Betriebssysteme / verteilte Systeme Parallel Processing (10/15) Xil

3.5 Task Parallelism with OpenMP ‘I

3.5.1 The sections Directive: Parallel Code Regions

#pragma omp sections [<clause_list>]

#pragma omp section

Statement / Block
#pragma omp section

Statement / Block

= Each section will be executed exactly once by one thread
= scheduling is implementation-defined (gcc: dynamic)

= At the end of the sections directive, a barrier synchronization is
performed

= unless the option nowait is specified

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 260

3.5.1 The sections directive ... ‘I

Example: independent code parts

double a[N], b[N];
Int i;
#pragma omp parallel sections private(i)

#pragma omp section
for (I=0; I<N; I++)
ali] = 100;
#pragma omp section
for (i=0; I<N; I++)
) b[i] = 200;

Important!!

= The two loops can be executed concurrently to each other

= Task partitioning

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 261

3.5.1 The sections directive ... ‘I

Example: scheduling / influence of nowait (= 03/sections. cpp)

void task(int no, int delay) {
int thread = omp_get_thread_num() ;
#pragma omp critical
cout << "Thread " << thread << ", Section " << no << " start\n";
usleep(delay) ;
#pragma omp critical
cout << "Thread " << thread << ", Section " << no << " end\n'";

}

main() {
#pragma omp parallel
{

#pragma omp sections //ggf. nowait

{

#pragma omp section
task(1, 200000);

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 262

3.5.1 The sections directive ... ‘I

Example: scheduling / influence of nowait ...

#pragma omp section
task(2, 1000000);

}

#pragma omp sections

{
#pragma omp section
task(3, 300000);
#pragma omp section
task (4, 200000);
#pragma omp section
task(5, 200000);

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 263

3.5.1 The sections directive ... "

Example: scheduling / influence of nowait ...

= Executions of the program without nowait option:

Thread 1 Thread 2 Thread 1 Thread 2 Thread 3
Sect. 1 Sect. 2
| |
Barrier
Sect. 3 Sect. 4 Sect. 4 Sect. 3 Sect. 5
) Sect. 5 u
|

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 264

3.5.1 The sections directive ... "

Example: scheduling / influence of nowait ...

= Executions of the program with nowait option:

Thread 1 Thread 2 Thread 1 Thread 2 Thread 3
Sect. 1 Sect. 2 Sect. 1 Sect. 2
Sect. 3
Sect. 3 Sect. 4
| |
Sect. 4
Barrier
Sect. 5

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 265

3.5 Task Parallelism with OpenMP ... "

3.5.2 The task Directive: Explicit Tasks

#pragma omp task [<clause_list>]
Statement/Block

= Creates an explicit task from the statement / the block
= Tasks will be executed by the available threads (work pool model)
w (Options private, firstprivate, shared determine, which

variables belong to the data environment of the task

= the default for local variables is firstprivate, I.e., local
variables declared outside but used inside the block are the
task’s input arguments

= QOption if allows to determine, when an explicit task should be
created

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 266

3.5.2 The task Directive ... ‘I

Example: parallel quicksort (== 03/gsort.cpp)

void quicksort(int *a, int lo, int hi) {

// Variables are ‘firstprivate’ by default

#pragma omp task if (j-lo > 10000)
quicksort(a, lo, j);

quicksort(a, i, hi);

+

int main() {

#pragma omp parallel

#pragma omp single nowalt // Execution by a single thread
quicksort (array, 0, n-1);

// Before the parallel region ends, we wait for the termination of all threads

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 267

3.5.2 The task Directive ... "

Task synchronization

#pragma omp taskwait #pragma omp taskgroup

Block

= taskwait: waits for the completion of all direct subtasks of the
current task

= taskgroup: at the end of the block, the program waits for all tasks,
which have been created within the block by the current task or
one of its subtasks

= available since OpenMP 4.0
= caution: older compilers ignore this directive!

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 268

3.5.2 The task Directive ... ‘I

Example: parallel quicksort (== 03/gsort.cpp)

= |magine the following change when calling quicksort:
#pragma omp parallel

{
#pragma omp single nowait // Execution by exactly one thread
quicksort (array, 0, n-1);
checkSorted (array, n); // Verify that array is sorted
+
= Problem:

= quicksort() starts new tasks
= tasks are not yet finished, when quicksort () returns

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 269

3.5.2 The task Directive ... ‘I

Example: parallel quicksort ...

= Solution 1:
void quicksort(int *a, int lo, int hi) {

#pragma omp task if (j-lo > 10000)

quicksort(a, lo, j);

quicksort(a, i, hi);

#pragma omp taskwait <— wait for the created task
by

= advantage: subtask finishes, before quicksort () returns

= necessary, when there are computations after the recursive
call

= disadvantage: relatively high overhead

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 270

3.5.2 The task Directive ... ‘I

Example: parallel quicksort ...

= Solution 2:
#pragma omp parallel

{
#pragma omp taskgroup
{
#pragma omp single nowait // Execution by exactly one thread
quicksort(array, 0, n-1);
+ <+ wait for all tasks created in the block
checkSorted (array, n);
+

= advantage: only wait at one single place

= disadvantage: semantics of quicksort () must be very well
documented

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 271

3.5.2 The task Directive ... "

Dependences between tasks (= 03/tasks.cpp)

= (ption depend allows to specify dependences between tasks

= you must specify the affected variables (or array sections, if
applicable) and the direction of data flow

= Beispiel:
#pragma omp task shared(a) depend(out: a)
a = computeA();
#pragma omp task shared(b) depend(out: b)
b = computeB(); &
#pragma omp task shared(a,b,c) depend(in: a,b)
c = computeCfromAandB(a, b); 50
#pragma omp task shared(b) depend(out: b) ::)E@
b = computeBagain() ;

5t

w the variables a, b, and ¢ must be shared in this case, since
they contain the result of the computation of a task

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 272

3.6 Tutorial: Tools for OpenMP ‘I

3.6.1 Debugging

= There are only few debuggers that fully support OpenMP
= c.g., lotalview

= requires tight cooperation between compiler and debugger
= On Linux PCs:
= odb and ddd allow halfway reasonable debugging

= they support multiple threads

= odb: textual debugger (standard LINUX debugger)
= ddd: graphical front end for gdb
= more comfortable, but more “heavy-weight”

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 273

3.6.1 Debugging ... "

= Prerequisite: compilation with debugging information
= sequential: g++ -g -o myProg myProg.cpp
= with OpenMP: g++ -g -fopenmp ...
= | imited(!) debugging is also possible in combination with
optimization
= however, the debugger may show unexpected behavior
= if possible: switch off the optimization
= g++ —-g -00 ...

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 274

3.6.1 Debugging ... "

Important functions of a debugger (Examples for gdb):

= Start the programm: run argl arg?2

Set breakpoints on code lines: break file.cpp:35

Set breakpoints on functions: break myFunc

Show the procedure call stack: where

Navigate in the procedure call stack: up bzw. down
Show the contents of variables: print i

Change the contents of variables: set variable i=i*15

Continue the program (after a breakpoint): continue

§ § 8 5 ¢ 5 0 3

Single-step execution: step bzw. next

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 275

3.6.1 Debugging ... "

Important functions of a debugger (Examples for gdb): ...
= Show all threads: info threads

w Select athread: thread 2
= subsequent commands typically only affect the selected thread

= Source code listing: 1list
= Help: help

= EXit the debugger: quit

= All commands can also be abbreviated in gdb

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 276

3.6.1 Debugging ... ‘I

Sample session with gdb (sequential)

bsclk01> g++ -g -00 -o ross ross.cpp < Option -g for debugging
bsclk01> gdb ./ross

GNU gdb 6.6

Copyright 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public ...
(gdb) b main < Set breakpoint on function main

Breakpoint 1 at 0x400d00: file ross.cpp, line 289.

(gdb) run 5 5 0 < Start program with given arguments

Starting program: /home/wismueller/LEHRE/pv/ross 5 5 0
Breakpoint 1, main (argc=4, argv=0x7fff0a131488) at ross.cpp:289
289 if (argc '= 4) {

(gdb) list < Listing around the current line

284
285 /*
286 ** Get and check the command line arguments

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 277

3.6.1 Debugging ... ‘I

287 */

288

289 if (argec '= 4) {

290 cerr << "Usage: ross <size_x> <size_y> ...
291 cerr << " <size_x> <size_y>: size...
292 cerr << " <all>: 0 = compute one ...
293 cerr << " 1 = compute all ...

(gdb) b 315 < Set breakpoint on line 315
Breakpoint 2 at 0x400e59: file ross.cpp, line 315.

(gdb) c¢ <« Continue the program

Continuing.

Breakpoint 2, main (argc=4, argv=0x7fff0a131488) at ross.cpp:315
315 num_moves = Find_Route(size_x, size_y, moves);

(gdb) n <« Execute next source line (here: 315)

320 if (num_moves >= 0) {

(gdb) p nummoves <— Print contents of num_moves

$1 = 24

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 278

3.6.1 Debugging ... ‘I

(gdb) where <— Where is the program currently stopped?

#0 main (argc=4, argv=0x7fff0a131488) at ross.cpp:320
(gdb) c¢ < Continue program

Continuing.

Solution:

Program exited normally.
(gdb) q < exitgdb
bsclk01>

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 279

3.6.1 Debugging ... ‘I

Sample session with gdb (OpenMP)

bslab03> g++ -fopenmp -00 -g -o heat heat.cpp solver-jacobi.cpp
bslab03> gdb ./heat

GNU gdb (GDB) SUSE (7.5.1-2.1.1)
(gdb) run 500

Program received signal SIGFPE, Arithmetic exception.
0x0000000000401711 in solver._omp_fn.0 () at solver-jacobi.cpp:58

58 b[i]l [j] = i/(i-100);
(gdb) info threads
Id Target Id Frame
4 Thread ... (LWP 6429) ... in ... at solver-jacobi.cpp:59
3 Thread ... (LWP 6428) ... in ... at solver-jacobi.cpp:59
2 Thread ... (LWP 6427) ... in ... at solver-jacobi.cpp:63
*x 1 Thread ... (LWP 6423) ... in ... at solver-jacobi.cpp:58
(gdb) q

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 280

3.6.1 Debugging ... "

Sample session with ddd

o

)¢ DDD: /home/wismueller/mnt/lab/LEHRE/pv/CODE/SPR

File Edit View Program Commands Status Source Data Help
BreaprInt IEI| B S rLg:-p\Eéqu. Fﬂa Hﬁﬂ_.:ﬂa‘ftﬂ FET I':u%: z:}-::? % h_n::;_e ﬁ Uﬁb
Al
=+cll." s
T e num_moves = Find_Route(size_x, size_y, mowes); VO Wy
/* ,] Listing Run |
Eos | . o ; d
o Print the resulf. (commands via Irterrupt |
» 1" CHTRIGIER = 2. om0t mouse button) sep s | f§
Current 7 et | st]| |
position _Menu Jf+
Copyright @ 2001-2004 Free Sofftware Foundation, Inc. Ccant | wi |
Using host libthread_db Tibrary "/1ib/tls/1ibthread_db.so.1". s |
(gdb)} break ross.c:315 Up | Downl| |
Breakpoint 1 at 0x8048b280: file ross.c, line 315. = B
(gdbl run 5 5 0 | ‘Hndo- | Redo ||
Breakpoint 1, main Cargc=4, argy=0xbf8dfi1b4) at ross.c:313 ! EEl _Mﬁk'},‘
(qdb) next
ﬁdh]ggrint NUM_MoYes Input/Output
tgdb) T (also input of gdb commands) i
¥,
X
i £ = E(e)tlﬁggsvglyllg?eurjrlllgr/ verteilte Systeme Parallel Processing (10/15) 281

3.6 Tutorial: Tools for OpenMP ... "

3.6.2 Performance Analysis
= Typically: instrumentation of the generated executable code
during/after the compilation

= insertion of code at important places in the program

= in order monitor relevant events
= e.g., at the beginning/end of parallel regions, barriers, ...

= during the execution, the events will be

= individually logged in a trace file (Spurdatei)
= or already summarized into a profile

= Evaluation is done after the program terminates
= c.f. Section 2.8.6

= Example: Scalasca

= sSee https://www.scalasca.org/scalasca/software

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 282

https://www.scalasca.org/scalasca/software

3.6.2 Performance Analysis ...

d

Performance analysis using Scalasca

= Compile the program:

= scalasca -instrument g++ —-fopenmp ... barrier.cpp

= Execute the program:
= scalasca —analyze ./barrrier

= stores data in a directory scorep_barrier_0x0_sum

= 0x0 indicates the number of threads (0 = default)
= directory must not yet exist; remove it, if necessary

= |nteractive analysis of the recorded data:

= scalasca -examine scorep_barrier_0xO_sum

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15)

283

3.6.2 Performance Analysis ...

Performance analysis using Scalasca:

File Display Plugins Help

Restore Setkting = Save Settings

Absolute

: | Absolute

= | | Absolute

Example from slide 255

- |

B Metrictree |

¥ [0 0.00 Time (sec)
¥ [0 7.21 Execubion
I-"-_"

O 0.00 Overhead

B 0.00 Idle threads

49 Visits {occ)

O 0 synchronizations (ocg)

O 0 Communications {occ)

O 0 Bytes transferred (bytes)

O 0 MPI File operations (occ)

3.25 Computational imbalance (sec)

0.00 Minimum Inclusive Time (sec)

LA A A

1.60 Maximum Inclusive Time [sec)

Call tree Flat view

¥ [0.00 main
v [l 0.00 'Somp parallel @barrier.c24
¥ [0.00 'Semp for @barrier.c28
O 2.71 'Somp implicit barrier @barrier.c:33
¥ [0.00 'Somp for @barrier.c36
= 2.90 !'Somp implicit barrier @barrier.c41
0.00 'Somp implicit barrier @barrier.c43

I system tree I§| Boxplot

¥ [- machine Linux
¥ U -node bspc02
¥ [- Process
0.00 Master thread
0.11 OMP thread 1
0.22 OMP thread 2
@ 0.32 OMP thread 3
0.38 OMP thread 4
@ 0.50 OMP thread 5
@ 0.62 OMP thread 6
O 0.75 OMP thread 7

 All (8 elements) e

12.83

Eu 5.62 (43.78%)

2.90 (51.69%) 5.62

0.00

‘D.GD

=" Roland Wismdliller

== Betriebssysteme / verteilte Systeme

Parallel Processing (10/15)

3.6.2 Performance Analysis ... ‘I

Performance analysis using Scalasca: Example from slide 255 ...

= |n the example, the waiting time at barriers in the first loop can be
reduced drastically by using the option nowait:

Absolute * | | Absolute + | Absolute =
B Metrictree Call tree Flat view = | systemtree [l BoxPlot
¥ [0.00 Time (sec) v [0.00 main . ¥ [1-machinelinx
v [7.97 Execution v [N 0.00 !Somp parallel @barrier.c:24 ' ¥ [- node bspc02
B 0.15 OMP O 0.00 "Somp for @barrier.c28 ¥ [- Process
O 0.00 Overhead ¥ [0.00 'Somp For @barrier.c36 | & 0.03 Master thread
P 0.00 Idle threads 0.15 'Somp implicit barrier @barrier.c41 = 0.03 OMP thread 1
41 Visits {occ) 0.00 'Somp implicit barrier @barrier.c:43 = 0.03 OMP thread 2
= [0 Synchronizations [occ) : @ 0.02 OMP thread 3
k [0 Communications (occ) @ 0.02 OMP thread 4
B [0 Bytes transferred (bytes) 0.01 OMP thread 5
+ [1 0 MPIfile operakions {occ) 0.00 OMP thread &
2 3.99 Computational imbalance (sec) 0.00 OMP thread7 | |
0.00 Minimum Inclusive Time (sec) '
1.02 Maximum Inclusive Time (sec)

: : _ _ | All (8 elements) =
t}.ﬂﬂ 0.15(1.84%) 8.12| |0.00 0.15 (99.73%) 0.15| |0.00 0.15

. E | B

z== Roland Wismdller .
— == Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 285

3.7 Exercise: A Solver for the Sokoban Game "

Background
= Sokoban: japanese for “warehouse keeper”
= Computer game, developed in 1982 by Hiroyuki Imabayashi

= (Goal: player must push all objects (boxes) to the target positions
(storage locations)

= poxes can only be pushed, not pulled
= only one box can be pushed at a time

b -pet T ekl .Roland WismU‘IIer .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 286

3.7 Exercise: A Solver for the Sokoban Game "

Background
= Sokoban: japanese for “warehouse keeper”
= Computer game, developed in 1982 by Hiroyuki Imabayashi

= (Goal: player must push all objects (boxes) to the target positions
(storage locations)

= poxes can only be pushed, not pulled
= only one box can be pushed at a time

b -pet T ekl .Roland WismU‘IIer .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 286

3.7 Exercise: A Solver for the Sokoban Game "

Background
= Sokoban: japanese for “warehouse keeper”
= Computer game, developed in 1982 by Hiroyuki Imabayashi

= (Goal: player must push all objects (boxes) to the target positions
(storage locations)

= poxes can only be pushed, not pulled
= only one box can be pushed at a time

a i 3

Fhe T .—RolandW|smuIIer o | : |)
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 286

3.7 Exercise: A Solver for the Sokoban Game ... ‘I

How to find the sequence of moves?

= (Configuration: state of the play field
= positions of the boxes
= position of the player (connected component)

= Each configuration has a set of
successor configurations

= Configurations with successor relation
build a directed graph

= not a tree, since cycles are possible!

= Wanted: shortest path from the root of
the graph to the goal configuration

= |.e., smallest number of box

2 =
..........................
THRLP. IR CLTRUP IRLR. : 7 TRLP, W ST TRLP (VRLP.

pushes FEAEERE SSEEECE \ RN

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 287

3.7 Exercise: A Solver for the Sokoban Game ... ‘I

How to find the sequence of moves? 5 :

)

Y BT E LR S 14 T2 TP O oY T LB R T AT A TP O

J;;/; LLiil J’il I_Lriz_ kjjllnl\uli 1\
=*"%=z2"" Roland Wismiller ' '

ETE77% Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 287

3.7 Exercise: A Solver for the Sokoban Game ... "

How to find the sequence of moves? ...

= Two alternatives:
= depth first search = breadth first search

Al
A

{—
= problems: = problems:
= cycles = reconstruction of the
- handling paths with dif- path to a node
ferent lengths = memory requirements

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (10/15) 288

Parallel Processing

Winter Term 2024/25

02.12.2024

Roland Wismduller
Universitat Siegen
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: January 13, 2025

E*T5="" Roland Wismdiller . :
ZI5_I= Betriebssysteme / verteilte Systeme Parallel Processing (11/15) X1V

3.7 Exercise: A Solver for the Sokoban Game ... "

Backtracking algorithm for depth first search:

DepthFirstSearch(conf): // conf = current configuration
append conf to the soultion path
If conf is a solution configuration:
found the solution path
return
If depth is larger than the depth of the best solution so far:
remove the last element from the solution path
return // cancel the search in this branch
for all possible successor configurations ¢ of conf:
If ¢ has not yet been visited at a smaller or equal depth:
remember the new depth of ¢
DepthFirstSearch(c) // recursion
remove the last element from the solution path
return // backtrack

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 289

3.7 Exercise: A Solver for the Sokoban Game ... "

Algorithm for breadth first search:

BreadthFirstSearch(conf). // conf = start configuration
add conf to the queue at depth O
depth = 1;
while the queue at depth depth-1 is not empty:
for all configurations conf in this queue:
for all possible successor configurations ¢ of conf:
If configuration ¢ has not been visited yet:
add the configuration ¢ with predecessor conf to the
set of visited configurations and to the queue for
depth depth
If ¢ is a solution configuration:
determine the solution path to ¢
return // found a solution
depth = depth+1
return // no solution

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 290

3.7 Exercise: A Solver for the Sokoban Game ... ‘I

Example for the backtracking algorithm

Configuration with possible moves

<+ Possible move
<«— (Chosen move

E*T5="" Roland Wismdiller .
ZI5_I= Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 291

3.7 Exercise: A Solver for the Sokoban Game ...

Example for the backtracking algorithm

Move has been executed
New configuration with possible moves

<+ Possible move
<«— (Chosen move

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (11/15)

291

3.7 Exercise: A Solver for the Sokoban Game ...

Example for the backtracking algorithm

Move has been executed
No further move is possible

<+ Possible move
<«— (Chosen move

=T===" Roland Wismdiller i
=== Betriebssysteme / verteilte Systeme Parallel Processing (11/15)

291

3.7 Exercise: A Solver for the Sokoban Game ...

Example for the backtracking algorithm

Backtrack
Back to previous configuration, next move

<+ Possible move
<«— (Chosen move

=T===" Roland Wismdiller i
=== Betriebssysteme / verteilte Systeme Parallel Processing (11/15)

291

3 Parallel Programming with Shared Memory ... "

3.8 Excursion: Lock-Free Data Structures

= (Goal: Data structures (typically collections) without mutual
exclusion

= more performant, no danger of deadlocks

= [ock-free: under any circumstances at least one of the threads
makes progress after a finite number of steps

= |n addition, wait-free also prevents starvation

= Typical approach:
= use atomic read-modify-write instructions instead of locks

= in case of conflict, i.e., when there is a simultaneous change
by another thread, the affected operation is repeated

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 292

3.8 Excursion: Lock-Free Data Structures ...

Example: appending to an array (at the end)

int fetch_and_add(int *addr, int val) {
int tmp = *addr;)
xaddr += val; > Atomic!
return tmp;

+

Data buffer[N]; // Buffer array
int wrPos = O; // Position of next element to be inserted

void add_last(Data data) {
int wrPos0ld = fetch_and_add (&wrPos, 1);
buffer [wrPos01ld] = data;

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (11/15)

293

3.8 Excursion: Lock-Free Data Structures ... ‘I

Example: prepend to a linked list (at the beginning)

bool compare_and_swap(void **addr, void *exp, void *newVal) -
if (xaddr == exp) {)
*addr = newVal;

return true; > Atomic!
+
return false;)
+
Element* firstNode = NULL; // Pointer to first element

void add_first(Element* node) {
Element* tmp;
do {
tmp = firstNode;
node->next = tmp;
} while (!compare_and_swap(&firstNode, tmp, node));

+

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 294

3.8 Excursion: Lock-Free Data Structures ... "

= Problems

= re-use of memory addresses can result in corrupt data
structures

= assumption in linked list: if firstNode is still unchanged,
the list was not accessed concurrently

= thus, we need special procedures for memory deallocation

w There is a number of libraries for C++ and also for Java
= C++: €.9., boost.lockfree, libcds, Concurrency Kit, liblfds

= Java: e.g., Amino Concurrent Building Blocks, Highly Scalable
Java

= Compilers usually offer read-modify-write operations, e.g.:
w C++ type: std: :atomic<T>

= occ/g++: built-in functions __sync_...() or __atomic_...(Q)

ET5=7" Roland Wismdiller .
=1#_C= Betriebssysteme / verteilte Systeme Parallel Processing (11/15) 295

	3 Parallel Programming with Shared Memory
	3.1 OpenMP Basics
	3.1.1 The parallel directive
	3.1.2 Library routines

	3.2 Loop parallelization
	3.2.1 The for directive: parallel loops
	3.2.2 Parallelization of Loops
	3.2.3 Simple Examples
	3.2.4 Dependence Analysis in Loops

	3.3 Exercise: The Jacobi and Gauss/Seidel Methods
	3.4 OpenMP Synchronization
	3.4.1 Critical sections
	3.4.2 Atomic operations
	3.4.3 Reduction operations
	3.4.4 Execution in program order
	3.4.5 Barrier
	3.4.6 Execution using a single thread

	3.5 Task Parallelism with OpenMP
	3.5.1 The sections Directive: Parallel Code Regions
	3.5.2 The task Directive: Explicit Tasks

	3.6 Tutorial: Tools for OpenMP
	3.6.1 Debugging
	3.6.2 Performance Analysis

	3.7 Exercise: A Solver for the Sokoban Game
	3.8 Excursion: Lock-Free Data Structures

