
Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (1/15) i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 29, 2024

Parallel Processing

Winter Term 2024/25

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 69

Parallel Processing
Winter Term 2024/25

2 Basics of Parallel Processing

2 Basics of Parallel Processing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 70

Contents

➥ Motivation

➥ Parallelism

➥ Parallelism and data dependences

➥ Parallel computer architectures

➥ Parallel programming models

➥ Organisation forms for parallel programs

➥ Performance considerations

➥ A design process for parallel programs

Literature

➥ Ungerer

➥ Grama, Gupta, Karypis, Kumar

2.1 Motivation

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 71

What is parallelism?

➥ In general:

➥ executing more than one action at a time

➥ Specifically with respect to execution of programs:

➥ at some point in time

➥ more than one statement is executed

and / or

➥ more than one pair of operands is processed

➥ Goal: faster solution of the task to be processed

➥ Problems: subdivision of the task, coordination overhead

2.1 Motivation ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 72

Why parallel processing?

➥ Applications with high computing demands, esp. simulations

➥ climate, earthquakes, superconductivity, molecular design, ...

➥ Example: protein folding

➥ 3D structure, function of proteins (Alzheimer, BSE, ...)

➥ 1, 5 · 1011 floating point operations (Flop) / time step

➥ time step: 5 · 10−15s

➥ to simulate: 10−3s

➥ 3 · 1022 Flop / simulation

➥ ⇒ 1 year computation time on a PFlop/s computer!

➥ For comparison: world’s currently fastest computer: Frontier

(ORNL, USA), 1206 PFlop/s (with 8699904 CPU cores!)

2.1 Motivation ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 73

Why parallel processing? ...

➥ Moore’s Law: the computing power of a processor doubles every

18 months

➥ but: memory speed increases much slower

➥ 2040 the latest: physical limit will be reached

➥ Thus:

➥ high performance computers are based on parallel processing

➥ even standard CPUs use parallel processing internally

➥ super scalar processors, pipelining, multicore, ...

➥ Economic advantages of parallel computers

➥ cheap standard CPUs instead of specifically developed ones

2.1 Motivation ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 74

Architecture trend of high performance computers
19

93

19
95

20
00

20
05

20
10

no
w

Source:
Top500 List
www.top500.org

SMP

SIMD

Uniprocessor

SMP Cluster

MPP and DSM

(PC) Cluster

2.2 Parallelism

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 75

What is a parallel programm?

➥ A parallel program can be viewed as a partially ordered set of

instructions (activities)

➥ the order is given by the dependences between the

instructions

➥ Independent instructions can be executed in parallel

Dependence
parallel instruction sequence

(synchronisation)

Instruction

Dependence (sequential order)

2.2 Parallelism ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 76

Concurrency vs. pipelining

➥ Concurrency (Nebenläufigkeit): instructions are executed

simultaneously in different exceution units

➥ Pipelining: execution of instructions is subdivided into sequential

phases.

Different phases of different instruction instances are executed

simultaneously.

➥ Remark: here, the term “instruction” means a generic compute

activity, depending on the layer of abstraction we are considering

➥ e.g., machine instruction, execution of a sub-program

2.2 Parallelism ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 77

Concurrency vs. pipelining ...

Sequential
Execution

Concurrent
Execution

(2 Stages)
Pipelining

B C DA

A C

B D

A1 B1 C1 D1

A2 B2 C2 D2

2.2 Parallelism ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 78

At which layers of programming can we use parallelism?

➥ There is no consistent classification

➥ E.g., layers in the book from Waldschmidt, Parallelrechner:

Architekturen - Systeme - Werkzeuge, Teubner, 1995:

➥ application programs

➥ cooperating processes

➥ data structures

➥ statements and loops

➥ machine instruction

“They are heterogeneous, subdivided according to different

characteristics, and partially overlap.”

2.2 Parallelism ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 79

View of the application developer (design phase):

➥ “Natural parallelism”

➥ e.g., computing the forces for all stars of a galaxy

➥ often too fine-grained

➥ Data parallelism (domain decomposition, Gebietsaufteilung)

➥ e.g., sequential processing of all stars in a space region

➥ Task parallelism

➥ e.g., pre-processing, computation, post-processing,

visualisation

2.2 Parallelism ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 80

View of the programmer:

➥ Explicit parallelism

➥ exchange of data (communication / synchronisation) must be

explicitly programmed

➥ Implicit parallelism

➥ by the compiler

➥ directive controlled or automatic

➥ loop level / statement level

➥ compiler generates code for communication

➥ within a CPU (that appears to be sequential from the outside)

➥ super scalar processor, pipelining, ...

2.2 Parallelism ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 81

View of the system (computer / operating system):

➥ Program level (job level)

➥ independent programs

➥ Process level (task level)

➥ cooperating processes

➥ mostly with explicit exchange of messages

➥ Block level

➥ light weight processes (threads)

➥ communication via shared memory

➥ often created by the compiler

➥ parallelisation of loops

2.2 Parallelism ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 82

View of the system (computer / operating system): ...

➥ Instruction level

➥ elementary instructions (operations that cannot be further

subdivided in the programming language)

➥ scheduling is done automatically by the compiler and/or by the

hardware at runtime

➥ e.g., in VLIW (EPIC, e.g. Itanium) and super scalar processors

➥ Sub-operation level

➥ compiler or hardware subdivide elementary instructions into

sub-operations that are executed in parallel

➥ e.g., with vector or array operations

2.2 Parallelism ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 83

Granularity

➥ Defined by the ratio between computation and communication

(including synchronisation)

➥ intuitively, this corresponds to the length of the parallel

instruction sequences in the partial order

➥ determines the requirements for the parallel computer

➥ especially its communication system

➥ influences the achievable acceleration (speedup)

➥ Coarse-grained: program and process level

➥ Mid-grained: block level

➥ Fine-grained: instruction level

2.3 Parallelisation and Data Dependences

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 84

➥ Important question: when can two instructions S1 and S2 be

executed in parallel?

➥ Answer: if there are no dependences between them

➥ Assumption: instruction S1 can and should be executed before
instruction S2 according to the sequential code

➥ e.g.: S1: x = b + 2 * a;

y = a * (c - 5);

S2: z = abs(x - y);

➥ but also in different iterations of a loop

➥ True / flow dependence (echte Abhängigkeit) S1
δt

→ S2

for (i=1; i<N; i++) {

a[i] = a[i−1] + b[i];

...

2.3 Parallelisation and Data Dependences

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 84

➥ Important question: when can two instructions S1 and S2 be

executed in parallel?

➥ Answer: if there are no dependences between them

➥ Assumption: instruction S1 can and should be executed before
instruction S2 according to the sequential code

➥ e.g.: S1: x = b + 2 * a;

y = a * (c - 5);

S2: z = abs(x - y);

➥ but also in different iterations of a loop

➥ True / flow dependence (echte Abhängigkeit) S1
δt

→ S2

S1:

S2: a[2] = a[1] + b[2];

a[1] = a[0] + b[1];for (i=1; i<N; i++) {

a[i] = a[i−1] + b[i];

...

2.3 Parallelisation and Data Dependences

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 84

➥ Important question: when can two instructions S1 and S2 be

executed in parallel?

➥ Answer: if there are no dependences between them

➥ Assumption: instruction S1 can and should be executed before
instruction S2 according to the sequential code

➥ e.g.: S1: x = b + 2 * a;

y = a * (c - 5);

S2: z = abs(x - y);

➥ but also in different iterations of a loop

➥ True / flow dependence (echte Abhängigkeit) S1
δt

→ S2

δt

S1:

S2: a[2] = a[1] + b[2];

a[1] = a[0] + b[1];for (i=1; i<N; i++) {

a[i] = a[i−1] + b[i];

...

2.3 Parallelisation and Data Dependences

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 84

➥ Important question: when can two instructions S1 and S2 be

executed in parallel?

➥ Answer: if there are no dependences between them

➥ Assumption: instruction S1 can and should be executed before
instruction S2 according to the sequential code

➥ e.g.: S1: x = b + 2 * a;

y = a * (c - 5);

S2: z = abs(x - y);

➥ but also in different iterations of a loop

➥ True / flow dependence (echte Abhängigkeit) S1
δt

→ S2

S1 (i=1) writes to a[1], which
is later read by S2 (i=2)

δt

S1:

S2: a[2] = a[1] + b[2];

a[1] = a[0] + b[1];

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

for (i=1; i<N; i++) {

a[i] = a[i+1];
...

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

S1:

S2:

a[1] = a[2];

a[2] = a[3];

for (i=1; i<N; i++) {

a[i] = a[i+1];
...

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

δa

S1:

S2:

a[1] = a[2];

a[2] = a[3];

for (i=1; i<N; i++) {

a[i] = a[i+1];
...

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

S1 (i=1) read the value of a[2], which
is overwritten by S2 (i=2)δa

S1:

S2:

a[1] = a[2];

a[2] = a[3];

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

S1 (i=1) read the value of a[2], which
is overwritten by S2 (i=2)δa

S1:

S2:

a[1] = a[2];

a[2] = a[3];

➥ Output dependence (Ausgabeabhängigkeit) S1
δo

→ S2

for (i=1; i<N; i++) {

...
s = a[i];

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

S1 (i=1) read the value of a[2], which
is overwritten by S2 (i=2)δa

S1:

S2:

a[1] = a[2];

a[2] = a[3];

➥ Output dependence (Ausgabeabhängigkeit) S1
δo

→ S2

S1:

S2:

s = a[1];

s = a[2];

for (i=1; i<N; i++) {

...
s = a[i];

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

S1 (i=1) read the value of a[2], which
is overwritten by S2 (i=2)δa

S1:

S2:

a[1] = a[2];

a[2] = a[3];

➥ Output dependence (Ausgabeabhängigkeit) S1
δo

→ S2

oδ
S1:

S2:

s = a[1];

s = a[2];

for (i=1; i<N; i++) {

...
s = a[i];

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

S1 (i=1) read the value of a[2], which
is overwritten by S2 (i=2)δa

S1:

S2:

a[1] = a[2];

a[2] = a[3];

➥ Output dependence (Ausgabeabhängigkeit) S1
δo

→ S2

S1 (i=1) writes a value to s, which
is overwritten by S2 (i=2)

oδ
S1:

S2:

s = a[1];

s = a[2];

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 85

➥ Anti dependence (Antiabhängigkeit) S1
δa

→ S2

S1 (i=1) read the value of a[2], which
is overwritten by S2 (i=2)δa

S1:

S2:

a[1] = a[2];

a[2] = a[3];

➥ Output dependence (Ausgabeabhängigkeit) S1
δo

→ S2

S1 (i=1) writes a value to s, which
is overwritten by S2 (i=2)

oδ
S1:

S2:

s = a[1];

s = a[2];

➥ Anti and Output dependences can always be removed by

consistent renaming of variables

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 86

Data dependences and synchronisation

➥ Two instructions S1 and S2 with a data dependence S1 → S2

can be distributed by different threads only if a correct

synchronisation is performed

➥ S2 must be executed after S1

➥ e.g., by using signal/wait or a message

➥ in the previous example:

y = a * (c−5);

x = b + 2 * a;

z = abs(x−y);

2.3 Parallelisation and Data Dependences ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (3/15) 86

Data dependences and synchronisation

➥ Two instructions S1 and S2 with a data dependence S1 → S2

can be distributed by different threads only if a correct

synchronisation is performed

➥ S2 must be executed after S1

➥ e.g., by using signal/wait or a message

➥ in the previous example:

Thread 1 Thread 2

wait(cond);
y = a * (c−5);
signal(cond);

x = b + 2 * a;

z = abs(x−y);

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) vi

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 29, 2024

Parallel Processing

Winter Term 2024/25

21.10.2024

2.4 Parallel Computer Architectures

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 87

Classification of computer architectures according to Flynn

➥ Criteria for differentiation:

➥ how many instruction streams does the computer process at
a given point in time (single, multiple)?

➥ how many data streams does the computer process at a
given point in time (single, multiple)?

➥ Thie leads to four possible classes:

➥ SISD: Single Instruction stream, Single Data stream

➥ single processor (core) systems

➥ MIMD: Multiple Instruction streams, Multiple Data streams

➥ all kinds of multiprocessor systems

➥ SIMD: vector computers, vector extensions, GPUs

➥ MISD: empty, not really sensible

2.4 Parallel Computer Architectures ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 88

Classes of MIMD computers

➥ Considering two criteria:

➥ physically global vs. distributed memory

➥ shared vs. distributed address space

➥ NORMA: No Remote Memory Access

➥ distributed memory, distributed address space

➥ i.e., no access to memory modules of non-local nodes

➥ communication is only possible via messages

➥ typical representative of this class:

➥ distributed memory systems (DMM)
➥ also called MPP (massively parallel processor)

➥ in principle also any computer networks (cluster, grid,
cloud, ...)

2.4 Parallel Computer Architectures ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 89

Classes of MIMD computers ...

➥ UMA: Uniform Memory Access

➥ global memory, shared address space

➥ all processors access the memory in the same way

➥ access time is equal for all processors

➥ typical representative of this class:

symmetrical multiprocessor (SMP), early multicore-CPUs

➥ NUMA: Nonuniform Memory Access

➥ distributed memory, shared address space

➥ access to local memory is faster than access to remote one

➥ typical representative of this class:

distributed shared memory (DSM) systems, modern
multicore-CPUs

2.4 Parallel Computer Architectures ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 90

SMP: Symmetrical Multiprocessor DSM: Distributed Shared Memory

Interconnection Network

Interconnection Network

DMM: Distributed Memory

Processor Processor

Processor ProcessorProcessorProcessor

Shared Memory

Memory
Local Local

Memory

Local
Memory

Local
Memory

D
is

tr
ib

ut
ed

A
dd

re
ss

 S
pa

ce
A

dd
re

ss
 S

pa
ce

S
ha

re
d

Physically Distributed MemoryGlobal Memory

Interconnect (Bus)

Empty

send receive

2.4.1 MIMD: Message Passing Systems

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 91

Multiprocessor systems with distributed memory

CPU

Cache

CPU

Cache

NetworkNetwork
Memory Memory
Local Local

Node Node

Interface Interface

Interconnection Network

➥ NORMA: No Remote Memory Access

➥ Good scalability (up to several 100000 nodes)

➥ Communication and synchronisation via message passing

2.4.1 MIMD: Message Passing Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 92

Historical evolution

➥ In former times: proprietary hardware for nodes and network

➥ distinct node architecture (processor, network adapter, ...)

➥ often static interconnection networks with store and forward

➥ often distinct (mini) operating systems

➥ Today:

➥ cluster with standard components (PC server)

➥ usually with SMP (sometimes vector computers) as nodes

➥ nodes often use accelerators (GPUs)

➥ switched high performance interconnection networks

➥ 100Gbit/s Ethernet, Infiniband, ...

➥ standard operating systems (UNIX or Linux derivates)

2.4.1 MIMD: Message Passing Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 93

Properties

➥ No shared memory or address areas between nodes

➥ Communication via exchange of messages

➥ application layer: libraries like e.g., MPI

➥ system layer: proprietary protocols or TCP/IP

➥ latency caused by software often much larger than hardware

latency (∼ 1 − 50µs vs. ∼ 20 − 100ns)

➥ In principle unlimited scalability

➥ e.g. Frontier: 135936 nodes, (8699904 cores)

2.4.1 MIMD: Message Passing Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 94

Properties ...

➥ Independent operating system on each node

➥ Often with shared file system

➥ e.g., parallel file system, connected to each node via a

(distinct) interconnection network

➥ or simply NFS (in small clusters)

➥ Usually no single system image

➥ user/administrator “sees” several computers

➥ Often no direct, interactive access to all nodes

➥ batch queueing systems assign nodes (only) on request to

parallel programs

➥ often exclusively: space sharing, partitioning

➥ often small fixed partition for login and interactiv use

2.4.2 MIMD: Shared Memory Systems

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 95

Symmetrical multiprocessors (SMP)

CPU CPU CPU

Cache Cache Cache

Interconnect (Bus)

Memory
Module Module

Glo bal Shared

Memory

Me mory

➥ Global address space

➥ UMA: uniform memory

access

➥ Communication and

Synchronisation via

shared memory

➥ only feasible with very few

processors (ca. 2 - 32)

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 96

Multiprocessor systems with distributed shared memory (DSM)

CPU

Cache

CPU

Cache

Memory Memory
Local Local

N
od

e

N
od

e

Interconnection Network

➥ Distributed memory, accessible by all CPUs

➥ NUMA: non uniform memory access

➥ Combines shared memory and scalability

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 97

Properties

➥ All Processors can access all resources in the same way

➥ but: different access times in NUMA architectures

➥ distribute the data such that most accesses are local

➥ Only one instance of the operating systems for the whole
computer

➥ distributes processes/thread amongst the available processors

➥ all processors can execute operating system services in an
equal way

➥ Single system image

➥ for user/administrator virtually no difference to a uniprocessor
system

➥ Especially SMPs (UMA) only have limited scalability

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 98

Caches in shared memory systems

➥ Cache: fast intermediate storage, close to the CPU

➥ stores copies of the most recently used data from main
memory

➥ when the data is in the cache: no access to main memory is
necessary

➥ access is 10-1000 times faster

➥ Cache are essential in multiprocessor systems

➥ otherwise memory and interconnection network quickly
become a bottleneck

➥ exploiting the property of locality

➥ each process mostly works on “its own” data

➥ But: the existance of multiple copies of data cean lead to
inconsistencies: cache coherence problem (☞ BS-1)

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 99

Cache Coherence Problem: Example

➥ Assumption: write access directly updates main memory

➥ Three processors access the same memory location

and get different results!

1Cache Cache Cache 100:

P1 P2 P3
Memory
Main

Memory Bus

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 99

Cache Coherence Problem: Example

➥ Assumption: write access directly updates main memory

➥ Three processors access the same memory location

and get different results!

1Cache Cache Cache 100:

P1 P2 P3
Memory
Main

Memory Bus

read 100

read 100

1

1

100 1

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 99

Cache Coherence Problem: Example

➥ Assumption: write access directly updates main memory

➥ Three processors access the same memory location

and get different results!

1Cache Cache Cache 100:

P1 P2 P3
Memory
Main

Memory Bus

read 100

read 100

1

1

1100 100 1

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 99

Cache Coherence Problem: Example

➥ Assumption: write access directly updates main memory

➥ Three processors access the same memory location

and get different results!

2Cache Cache Cache 100:

P1 P2 P3
Memory
Main

Memory Bus

write 2,100

write 2,100

2100 100 1

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 99

Cache Coherence Problem: Example

➥ Assumption: write access directly updates main memory

➥ Three processors access the same memory location

and get different results!

2Cache Cache Cache 100:

P1 P2 P3
Memory
Main

Memory Bus

−− read 100

read 100 read 100 read 1002 12

100 22100 100 1

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 100

Enforcing cache coherency

➥ During a write access, all affected caches (= caches with copies)

must be notified

➥ caches invalidate or update the affected entry

➥ In UMA systems

➥ bus as interconnection network: every access to main memory

is visible for everybody (broadcast)

➥ caches “listen in” on the bus (bus snooping)

➥ (relatively) simple cache coherence protocols

➥ e.g., MESI protocol

➥ but: bad scalability, since the bus is a shared central resource

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 101

Enforcing cache coherency ...

➥ In NUMA systems (ccNUMA: cache coherent NUMA)

➥ accesses to main memory normally are not visible to other

processors

➥ affected caches must be notified explicitly

➥ requires a list of all affected caches (broadcasting to all

processors is too expensive)

➥ message transfer time leads to additional consistency

problems

➥ cache coherence protocols (directory protocols) become very

complex

➥ but: good scalability

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 102

Memory consistency (Speicherkonsistenz)

➥ Cache coherence only defines the behavior with respect to one
memory location at a time

➥ which values can a read operation return?

➥ Remaining question:

➥ when does a processor see the value, which was written by

another processor?

➥ more exact: in which order does a processor see the write

operations on different memory locations?

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 103

Memory consistency: a simple example

Thread T1 Thread T2

A = 0; B = 0;

...; ...;

A = 1; B = 1;

print B; print A;

➥ Intuitive expectation: the output "0 0" can never occur

➥ But: with many SMPs/DSMs the output "0 0" is possible

➥ (CPUs with dynamic instruction scheduling or write buffers)

➥ In spite of cache coherency: intuitively inconsistent view on the

main memory:
T1: A=1, B=0 T2: A=0, B=1

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 104

Definition: sequential consistency

Sequential consistency is given, when the result of each execution of

a parallel program can also be produced by the following abstract

machine:

P2 Pn. . .P1

Main Memory

Processors execute
memory operations
in program order

The switch will be randomly switched
after each memory access

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 105

Interleavings (Verzahnungen) in the example

A = 0

B = 1

print A
print B

A = 0

B = 1
print A

A = 0
B = 0

print A
B = 1

A = 1
print B

print B

B = 0
A = 1

B = 0
A = 1

A = 0
B = 0

print A

print B

B = 1

A = 1

B=0

consistency:

B=1 A=1 B=0 A=1 B=1 A=0 A=0

No sequential
using the abstract machine:

Some possible execution sequences

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 106

Weak consistency models

➥ The requirement of sequential consistency leads to strong
restrictions for the computer architecture

➥ CPUs can not use instruction scheduling and write buffers

➥ NUMA systems can not be realized efficiently

➥ Thus: parallel computers with shared memory (UMA and NUMA)
use weak consistency models!

➥ allows, e.g., swapping of write operations

➥ however, each processor always sees its own write
operations in program order

➥ Remark: also optimizing compilers can lead to weak consistency

➥ swapping of instructions, register allocation, ...

➥ declare the affected variables as atomic / volatile!

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 107

Consequences of weak consistency: examples

➥ all variables are initially 0

print A;

while (!valid);

valid=1;

A=1;

print A;print B;

B=1;A=1;

Possible results with
sequential consistency

accesses to A and valid

due to swapping of the write

read and write accesses

due to swapping of the

weak consistency:

"unexpected" behavior with

0,1
1,0
1,1

1

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 108

Weak consistency models ...

➥ Memory consistency can (and must!) be enforced as needed,

using special instrcutions

➥ fence / memory barrier (Speicherbarriere)

➥ all previous memory operations are completed; subsequent

memory operations are started only after the barrier

➥ acquire and release

➥ acquire: subsequent memory operations are started only

after the acquire is finished

➥ release: all previous memory operations are completed

➥ pattern of use is equal to mutex locks

2.4.2 MIMD: Shared Memory Systems ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 109

Enforcing consistency in the examples

➥ Here shown with memory barriers:

A=1;

print B;

A=1;

valid=1;

B=1;

print A;

while (!valid);

print A;

fence;

fence;

Fence ensures that the write access
is finished before reading

Fence ensures that ’A’ is valid

’valid’ has been set

before ’valid’ is set
and that A is read only after

fence;

fence;

2.4.3 SIMD

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 110

➥ Only a single instruction stream, however, the instrcutions have

vectors as operands ⇒ data parallelism

➥ Vector = one-dimensional array of numbers

➥ Variants:

➥ vector computers

➥ pipelined arithmetic units (vector units) for the processing of

vectors

➥ SIMD extensions in processors (SSE, AVX)

➥ Intel: 128 Bit registers with, e.g., four 32 Bit float values

➥ graphics processors (GPUs)

➥ multiple streaming multiprocessors

➥ streaming multiprocessor contains several arithmetic units

(CUDA cores), which all execute the same instruction

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 111

Example: addition of two vectors

➥ Aj = Bj + Cj , for all j = 1, ...,N

➥ Vector computer: the elements of the vectors are added in a

pipeline: sequentially, but overlapping

➥ if a scalar addition takes four clock cycles (i.e., 4 pipeline

stages), the following sequence will result:

Time

Stage 4

Stage 3

Stage 2

Stage 1

1
cy

cl
e

1

1

1

1

B+C

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 111

Example: addition of two vectors

➥ Aj = Bj + Cj , for all j = 1, ...,N

➥ Vector computer: the elements of the vectors are added in a

pipeline: sequentially, but overlapping

➥ if a scalar addition takes four clock cycles (i.e., 4 pipeline

stages), the following sequence will result:

Time

Stage 4

Stage 3

Stage 2

Stage 1

1
cy

cl
e

1

1

1

1 2

2

2

2

B+C

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 111

Example: addition of two vectors

➥ Aj = Bj + Cj , for all j = 1, ...,N

➥ Vector computer: the elements of the vectors are added in a

pipeline: sequentially, but overlapping

➥ if a scalar addition takes four clock cycles (i.e., 4 pipeline

stages), the following sequence will result:

Time

Stage 4

Stage 3

Stage 2

Stage 1

1
cy

cl
e

1

1

1

1 2

2

2

2

3

3

N

N

N

N

3

3
B+C

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 112

Example: addition of two vectors

➥ Aj = Bj + Cj , for all j = 1, ...,N

➥ SSE and GPU: several elements of the vectors are added

concurrently (in parallel)

➥ if, e.g., four additions can be done at the same time, the

following sequence will result:

1

2

3

4

Time

Arithmetic Unit 1

Arithmetic Unit 2

Arithmetic Unit 3

Arithmetic Unit 4

B+C

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 112

Example: addition of two vectors

➥ Aj = Bj + Cj , for all j = 1, ...,N

➥ SSE and GPU: several elements of the vectors are added

concurrently (in parallel)

➥ if, e.g., four additions can be done at the same time, the

following sequence will result:

5

6

7

8

1

2

3

4

Time

Arithmetic Unit 1

Arithmetic Unit 2

Arithmetic Unit 3

Arithmetic Unit 4

B+C

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 112

Example: addition of two vectors

➥ Aj = Bj + Cj , for all j = 1, ...,N

➥ SSE and GPU: several elements of the vectors are added

concurrently (in parallel)

➥ if, e.g., four additions can be done at the same time, the

following sequence will result:

N−1

N−2

N−3

N

5

6

7

8

1

2

3

4

Time

Arithmetic Unit 1

Arithmetic Unit 2

Arithmetic Unit 3

Arithmetic Unit 4

B+C

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 113

Architecture of a GPU (NVIDIA Fermi)
M

em
or

y
co

nt
ro

lle
r

an
d

H
os

t I
nt

er
fa

ce

M
em

or
y

co
nt

ro
lle

r

S
tr

ea
m

in
g

M
ul

tip
ro

ce
ss

or

L2 Cache

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 113

Architecture of a GPU (NVIDIA Fermi)
M

em
or

y
co

nt
ro

lle
r

an
d

H
os

t I
nt

er
fa

ce

M
em

or
y

co
nt

ro
lle

r

S
tr

ea
m

in
g

M
ul

tip
ro

ce
ss

or

L2 Cache

FP INT Core

Core

Core

Core

Core

Core

Core

LD/ST
LD/ST
LD/ST
LD/ST

LD/ST
LD/ST

LD/ST
LD/ST

LD/ST
LD/ST

LD/ST
LD/ST

LD/ST
LD/ST

LD/ST
LD/ST

Instruction Cache

Warp SchedulerWarp Scheduler

Dispatch Unit Dispatch Unit

Register File

Core Core

Core

Core

Core

Core

Core

Core

Core

SFU

SFU

SFU

SFU

Interconnect Network

Shared Memory / L1 Cache

Uniform Cache

2.4.3 SIMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 114

Programming of GPUs (NVIDIA Fermi)

➥ Partitioning of the code in groups (warps) of 32 threads

➥ Warps are distributed to the streaming multiprocessors (SEs)

➥ Each of the two warp schedulers of an SE executes one
instruction with 16 threads per clock cycle

➥ in a SIMD manner, i.e., the cores all execute the same
instruction (on different data) or none at all

➥ e.g., with if-then-else:

➥ first some cores execute the then branch,
➥ then the other cores execute the else branch

➥ Threads of one warp should address subsequent memory
locations

➥ only in this case, memory accesses can be merged

2.4.4 High Performance Supercomputers

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 115

Trends
19

93

19
95

20
00

20
05

20
10

no
w

Source:
Top500 List
www.top500.org

SMP

SIMD

Uniprocessor

SMP Cluster

MPP and DSM

(PC) Cluster

2.4.4 High Performance Supercomputers ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 116

Typical architecture:

➥ Message passing computers with SMP nodes and accelerators
(e.g. GPUs)

➥ at the highest layer: systems with distributed memory

➥ nodes: NUMA systems with partially shared cache hierarchy

➥ in addition one or more accelerators per node

➥ Compromise between scalability, programmability and
performance

➥ Programming with hybrid programming model

➥ message passing between the nodes (manually, MPI)

➥ shared memory on the nodes (compiler supported, e.g.,
OpenMP)

➥ if need be, additional programming model for accelerators

2.4.4 High Performance Supercomputers ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (4/15) 117

Typical architecture: ...

M
e

m
o

ry
 c

o
n

tr
o

lle
r

a
n

d
 H

o
st

 I
n

te
rf

a
ce

M
e

m
o

ry
 c

o
n

tr
o

lle
r

S
tr

e
a

m
in

g
M

u
lti

p
ro

ce
ss

o
r

L2 Cache

Cache Cache

...

...

...

...
Memory

Main
Memory

Main

Core

Cache

Core

Cache

Core

Cache

Core

Cache

Core

Cache

Core

Cache

Core

Cache

Core

Cache

GPU

Graphics

CPU CPU

Interconnection Network

Memory

Network
Interface

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) vii

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 29, 2024

Parallel Processing

Winter Term 2024/25

22.10.2024

Lunch with the ET-I Profs

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) viii

➥ Wednesday, Oct. 23rd
12:00 - 13:00
LEO Paul-Bonatz Campus

➥ Explicit offer for asking questions to ETI professors, e.g.:

➥ can I write my Thesis abroad?

➥ what kind of industry collaborations do you have?

➥ hat sort of Erasmus partnerships do you have?

➥ which lectures would you recommend me to take?

➥ ...?

2.5 Parallel Programming Models

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 118

In the followig, we discuss:

➥ Shared memory

➥ Message passing

➥ Distributed objects

➥ Data parallel languages

➥ The list is not complete (e.g., data flow models, PGAS)

2.5.1 Shared Memory

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 119

➥ Light weight processes (threads) share a common virtual address
space

➥ The “more simple” parallel programming model

➥ all threads have access to all data

➥ also good theoretical foundation (PRAM model)

➥ Mostly with shared memory computers

➥ however also implementable on distributed memory computers
(with large performance panalty)

➥ shared virtual memory (SVM)

➥ Examples:

➥ PThreads, Java Threads, C++ Threads

➥ Intel Threading Building Blocks (TBB)

➥ OpenMP (☞ 3.1)

2.5.1 Shared Memory ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 120

Example for data exchange

for (i=0; i<size; i++)

flag = size;

buffer[i] = produce();

Execution Sequence:

Producer Thread

while(flag==0);

for (i=0; i<flag; i++)

consume(buffer[i]);

Consumer Thread

flag != 0

flag == 0
flag == 0flag = 10

Write into shared buffer

Read data from buffer

2.5.2 Message Passing

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 121

➥ Processes with separate address spaces

➥ Library routines for sending and receiving messages

➥ (informal) standard for parallel programming:

MPI (Message Passing Interface, ☞ 4.2)

➥ Mostly with distributed memory computers

➥ but also well usable with shared memory computers

➥ The “more complicated” parallel programming model

➥ explicit data distribution / explicit data transfer

➥ typically no compiler and/or language support

➥ parallelisation is done completely manually

2.5.2 Message Passing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 122

Example for data exchange

receive(&buffer,

buffer_length);&buffer, size);

System call
Block the process (thread)

Copy OS buffer to user buffer
Interrupt
DMA from network to OS buffer

Set process to ready
Process the message

send(receiver,

DMA to network interface
Prepare DMA

Check permissions
System call

Producer Process Consumer Process

User Process

Hardware
Operating System (OS)

2.5.3 Distributed Objects

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 123

➥ Basis: (purely) object oriented programming

➥ access to data only via method calls

➥ Then: objects can be distributed to different address spaces

(computers)

➥ at object creation: additional specification of a node

➥ object reference then also identifies this node

➥ method calls via RPC mechanism

➥ e.g., Remote Method Invocation (RMI) in Java

➥ more about this: lecture “Distributed Systems”

➥ Distributed objects alone do not yet enable parallel processing

➥ additional concepts / extensions are necessary

➥ e.g., threads, asynchronous RPC, futures

2.5.4 Data Parallel Languages

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 124

➥ Goal: support for data parallelism

➥ Sequential code is amended with compiler directives

➥ Specification, how to distribute data structures (typically

arrays) to processors

➥ Compiler automatically generates code for synchronisation or

communication, respectively

➥ operations are executed on the processor that “possesses” the

result variable (owner computes rule)

➥ Example: HPF (High Performance Fortran)

➥ Despite easy programming not really successful

➥ only suited for a limited class of applications

➥ good performance requires a lot of manual optimization

2.5.4 Data Parallel Languages ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 125

Example for HPF

!HPF$ ALIGN B(:,:) WITH A(:,:)

REAL A(N,N), B(N,N)

!HPF$ DISTRIBUTE A(BLOCK,*)

DO I = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(J,I)

END DO

END DO

Distribution with 4 processors:

A B

➥ Processor 0 executes computations for I = 1 .. N/4

➥ Problem in this example: a lot of communication is required

➥ B should be distributed in a different way

2.5.4 Data Parallel Languages ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 125

Example for HPF

!HPF$ ALIGN B(j,i) WITH A(i,j)

REAL A(N,N), B(N,N)

!HPF$ DISTRIBUTE A(BLOCK,*)

DO I = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(J,I)

END DO

END DO

Distribution with 4 processors:

A B

➥ Processor 0 executes computations for I = 1 .. N/4

➥ No communication is required any more

➥ but B must be redistributed, if neccessary

2.6 Focus of this Lecture

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 126

➥ Explicit parallelism

➥ Process and block level

➥ Coarse and mid grained parallelism

➥ MIMD computers (with SIMD extensions)

➥ Programming models:

➥ shared memory

➥ message passing

2.7 Organisation Forms for Parallel Programs

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 127

➥ Models / patterns for parallel programs

2.7.1 Embarrassingly Parallel

➥ The task to be solved can be divided into a set of completely
independent sub-tasks

➥ All sub-tasks can be solved in parallel

➥ No data exchange (communication) is necessary between the

parallel threads / processes

➥ Ideal situation!

➥ when using n processors, the task will (usually) be solved n
times faster

➥ (for reflection: why only usually?)

2.7.1 Embarrassingly Parallel ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 128

Illustration

Input data

Output data

. . .1 2 3 nTasks

2.7.1 Embarrassingly Parallel ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 129

Examples for embarrassingly parallel problems

➥ Computation of animations

➥ 3D visualizations, animated cartoons, motion pictures, ...

➥ each image (frame) can be computed independently

➥ Parameter studies

➥ multiple / many simulations with different input parameters

➥ e.g., weather forecast with provision for measurement errors,

computational fluid dynamics for optimizing an airfoil, ...

2.7 Organisation Forms for Parallel Programs ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 130

2.7.2 Manager/Worker Model (Master/Slave Model)

➥ A manager process creates

independent tasks and assigns them

to worker processes

➥ several managers are possible,

too

➥ a hierarchy is possible, too: a

worker can itself be the manager

of own workers

W2W1 W3 W4

Manager

Workers

➥ The manager (or sometimes also the workers) can create
additional tasks, while the workers are working

➥ The manager can become a bottleneck

➥ The manager should be able to receive the results asynchronously
(non blocking)

2.7.2 Manager/Worker Model (Master/Slave Model) ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 131

Typical application

➥ Often only a part of a task can be parallelised in an optimal way

➥ In the easiest case, the following flow will result:

. . .
(Slaves)

Workers

Distribute tasks (input)

1 2 n
Manager

(sequentially)
Preprocessing

Postprocessing
(sequentially) Collect results (output)

2.7.2 Manager/Worker Model (Master/Slave Model) ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 132

Examples

➥ Image creation and

processing

➥ manager partitions the

image into areas; each

area is processed by one

worker

➥ Tree search

➥ manager traverses the
tree up to a predefined

depth; the workers

process the sub-trees

Worker 1 Worker 2

Worker 3 Worker 4

Worker 1 Worker 6. . .

M
anager

2.7 Organisation Forms for Parallel Programs ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 133

2.7.3 Work Pool Model (Task Pool Model)

➥ Tasks are explicitly specified using a data structure

➥ input data + task description, if necessary

➥ Centralized or distributed pool (list) of tasks

➥ workers (threads or processes)

fetch tasks from the pool

➥ usually much more tasks than

workers

➥ good load balancing is possible

➥ accesses must be synchronised

Task Pool

W1 W2 W3 W4

➥ Workers can put new tasks into the pool, if need be

➥ e.g., with divide-and-conquer

2.7 Organisation Forms for Parallel Programs ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 134

2.7.4 Divide and Conquer

➥ Recursive partitioning of the task into independent sub-tasks

➥ Tasks dynamically create new sub-tasks

➥ Problem: limiting the number of tasks

➥ esp. if tasks are directly implemented by threads / processes

➥ Solutions:

➥ create a new sub-task only, if its size is larger than some
minimum

➥ maintain a task pool, which is executed by a fixed number of

threads

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 135

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel.

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 135

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel.

Thread 1
A[1..6]

Example:

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 135

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel.

Thread 2 Thread 3

Thread 1

A[3..6]A[1..2]

A[1..6]

Example:

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 135

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel.

Thread 2 Thread 3

Thread 1

A[2]A[1]

A[3..6]A[1..2]

A[1..6]

Example:

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 135

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel.

Thread 2 Thread 3

Thread 1

A[3..4] A[5..6]A[2]A[1]

A[3..6]A[1..2]

A[1..6]

Example:

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 135

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel.

Thread 2 Thread 3

Thread 1

A[3] A[4]

A[3..4] A[5..6]A[2]A[1]

A[3..6]A[1..2]

A[1..6]

Example:

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 135

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel.

Thread 11

Thread 2 Thread 3

Thread 1

A[5] A[6]A[3] A[4]

A[3..4] A[5..6]A[2]A[1]

A[3..6]A[1..2]

A[1..6]

Example:

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 136

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel. * Assumption: thread executes first call itself
and creates new thread for the second one

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5 Thread 6

A[5] A[6]A[3] A[4]

A[3..4] A[5..6]A[2]A[1]

A[3..6]A[1..2]

A[1..6]

Example:

2.7.4 Divide and Conquer ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 137

Example: parallel quicksort

Qsort(A1 .. n)

If n = 1: done.

Else:

Determine the pivot S.

Reorder A such that

Ai ≤ S for i ∈ [1, k[and

Ai ≥ S for i ∈ [k, n].

Execute Qsort(A1 .. k−1)
and Qsort(Ak .. n)

in parallel. * Additional Assumption: new thread is created

Thread 2

Thread 1

only if array length > 2

A[5] A[6]A[3] A[4]

A[3..4] A[5..6]A[2]A[1]

A[3..6]A[1..2]

A[1..6]

Example:

2.7 Organisation Forms for Parallel Programs ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 138

2.7.5 Data parallel Model: SPMD

➥ Fixed, constant number of processes (or threads, respectively)

➥ One-to-one correspondence between tasks and processes

➥ All processes execute the same program code

➥ however: conditional statements are possible ...

➥ For program parts which cannot be parallelised:

➥ replicated execution in each process

➥ execution in only one process; the other ones wait

➥ Usually loosely synchronous execution:

➥ alternating phases with independent computations and

communication / synchronisation

2.7.5 Data parallel Model: SPMD ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 139

Typical sequence

...
...

Synchronisation / communication

Synchronisation / communication

Synchronisation / Communication

T
im

e

2.7 Organisation Forms for Parallel Programs ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 140

2.7.6 Fork/Join Model

➥ Program consists of sequential

and parallel phases

➥ Thread (or processes, resp.) for

parallel phases are created at

run-time (fork)

➥ one for each task

➥ At the end of each parallel

phase: synchronisation and

termination of the threads (join)

Fork

Join

T
im

e

2.7 Organisation Forms for Parallel Programs ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 141

2.7.7 Task-Graph Model

➥ Tasks and their dependences

(data flow) are represented as a

graph

➥ An edge in the graph denotes a

data flow

➥ e.g., task 1 produces data,

task 2 starts execution, when

this data is entirely available

3

4 5 6

7

1

2

➥ Assignment of tasks to processors usually in such a way, that the

necessary amount of communication is as small as possible

➥ e.g., tasks 1, 5, and 7 in one process

2.7 Organisation Forms for Parallel Programs ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (5/15) 142

2.7.8 Pipeline Model

➥ A stream of data elements is directed through a

sequence of processes

➥ The execution of a task starts as soon as a

data element arrives

➥ Pipeline needs not necessarily be linear

➥ general (acyclic) graphs are possible, as

with the task-graph model

➥ Producer/consumer synchronisation between

the processes

P1

P2

P3 P4

P5

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) ix

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 29, 2024

Parallel Processing

Winter Term 2024/25

28.10.2024

2.8 Performance Considerations

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 143

➥ Which performance gain results from the parallelisation?

➥ Possible performance metrics:

➥ execution time, throughput, memory requirements, processor

utilisation, development cost, maintenance cost, ...

➥ In the following, we consider execution

time

➥ execution time of a parallel program:

time between the start of the program

and the end of the computation on the

last processor

P1 P2 P3 P4

tim
e

E
xecution

t

2.8.1 Performance Metrics

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 144

Speedup (Beschleunigung)

➥ Reduction of execution time due to parallel execution

➥ Absolute speedup

S(p) =
Ts

T (p)

➥ Ts = execution time of the sequential program (or the best

sequential algorithm, respectively)

➥ T (p) = execution time of the parallel program (algorithm) with

p processors

2.8.1 Performance Metrics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 145

Speedup (Beschleunigung) ...

➥ Relative speedup (for “sugarcoated” results ...)

S(p) =
T (1)

T (p)

➥ T (1) = execution time of the parallel program (algorithm) with

one processor

➥ Optimum: S(p) = p

➥ Often: with fixed problem size, S(p) declines again, when p
increases

➥ more communication, less computing work per processor

2.8.1 Performance Metrics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 146

Speedup (Beschleunigung) ...

➥ Typical trends:

Algorithm 2

Algorithm 1

Number of processors p

S
pe

ed
up

 S
ideal: S(p) = p

➥ Statements like “speedup of 7.5 with 8 processors” can not be

extrapolated to a larger number of processors

2.8.1 Performance Metrics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 147

Amdahl’s Law

➥ Defines an upper limit for the achievable speedup

➥ Basis: usually, not all parts of a program can be parallelized

➥ due to the programming effort

➥ due to data dependences

➥ Let a be the portion of time of these program parts in the

sequential version of the program. Then:

S(p) =
Ts

T (p)
≤

1

a + (1− a)/p
≤

1

a

➥ With a 10% sequential portion, this leads to S(p) ≤ 10

2.8.1 Performance Metrics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 148

Superlinear speedup

➥ Sometimes we observe S(p) > p, although this should actually

be impossible

➥ Causes:

➥ implicit change in the algorithm

➥ e.g., with parallel tree search: several paths in the search

tree are traversed simultaneously

➥ limited breadth-first search instead of depth-first search

➥ cache effects

➥ with p processors, the amount of cache is p times higher

that with one processor

➥ thus, we also have higher cache hit rates

2.8.1 Performance Metrics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 149

Efficiency

E(p) =
S(p)

p

➥ Metrics for the utilisation of a parallel computer

➥ E(p) ≤ 1, the optimum would be E(p) = 1

2.8.1 Performance Metrics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 150

Scalability

➥ Typical observations:

Problem size WNumber of processors p

Fixed problem size W
processors p
Fixed number of

E
ffi

ci
en

cy
 E

E
ffi

ci
en

cy
 E

➥ Reason: with increasing p: less work per processor, but the same

amount of (or even more) communication

2.8.1 Performance Metrics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 151

Scalability ...

➥ How must the problem size W increase with increasing number
of processors p, such that the efficiency stays the same?

➥ Answer is given by the isoefficiency function

➥ Parallel execution time

T (p) =
W + To(W,p)

p

➥ To(W,p) = overhead of parallel execution

➥ T and W are measured as the number of elementary
operations

➥ Thus:

W =
E(p)

1 − E(p)
· To(W,p)

2.8.1 Performance Metrics ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 152

Scalability ...

➥ Isoefficiency function I(p)

➥ solution of the equation W = K · To(W,p) w.r.t. W

➥ K = constant, depending on the required efficiency

➥ Good scalability: I(p) = O(p) or I(p) = O(p log p)

➥ Bad scalability: I(p) = O(pk)

➥ Computation of To(W,p) by analysing the parallel algorithm

➥ how much time is needed for communication / synchronisation
and potentially additional computations?

➥ more details and examples in chapter 2.8.5

2.8.2 Reasons for Performance Loss

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 153

➥ Access losses due to data exchange between tasks

➥ e.g., message passing, remote memory access

➥ Utilisation losses due to insufficent degree of parallelism

➥ e.g., waiting for data, load imbalance

➥ Conflict losses due to shared use of ressources by multiple

tasks

➥ e.g., conflicts when accessing the network, mutual exclusion

when accessing data

➥ Complexity losses due to additional work neccessary for the

parallel execution

➥ e.g., partitioning of unstructured grids

2.8.2 Reasons for Performance Loss ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 154

➥ Algorithmic losses due to modifications of the algorithms during

the parallelisation

➥ e.g., worse convergence of an iterative method

➥ Dumping losses due to computations, which are executed

redundantly but not used later on

➥ e.g., lapsed search in branch-and-bound algorithms

➥ Breaking losses when computations should end

➥ e.g., with search problems: all other processes must be

notified that a solution has been found

2.8.3 Load Balancing

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 155

Introduction

➥ For optimal performance: processors should compute equally

long between two (global) synchronisations

➥ synchronisation: includes messages and program start / end

P0
P1
P2
P3
P4

t t

P0
P1
P2
P3
P4

➥ Load in this context: execution time between two synchronisations

➥ other load metrics are possible, e.g., communication load

➥ Load balancing is one of the goals of the mapping phase

2.8.3 Load Balancing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 156

Reasons for load imbalance

➥ Unequal computational load of the tasks

➥ e.g., atmospheric model: areas over land / water

➥ Heterogeneous execution plattform

➥ e.g., processors with different speed

➥ Computational load of the tasks changes dynamically

➥ e.g., in atmospheric model, depending on the simulated

time of day (solar radiation)

➥ Background load on the processors

➥ e.g., in a PC cluster

dy
na

m
ic

st
at

ic

2.8.3 Load Balancing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 157

Example: atmospheric model

execution
time per
task

high
Day:

low
execution
time per
task

Night:

90S
0

0

90N

180 360

➥ Continents: static load imbalance

➥ Border between day and night: dynamic load imbalance

2.8.3 Load Balancing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 157

Example: atmospheric model

execution
time per
task

high
Day:

low
execution
time per
task

Night:

90S
0

0

90N

180 360

0 1 2 3

➥ Continents: static load imbalance

➥ Border between day and night: dynamic load imbalance

2.8.3 Load Balancing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 158

Static load balancing

➥ Goal: distribute the tasks to the processors at / before program

start, such that the computational load of the processors is equal

➥ Two fundamentally different approaches:

➥ take into account the tasks’ different computational load when

mapping them to processors

➥ extension of graph partitioning algorithms

➥ requires a good estimation of a task’s load

➥ no solution, when load changes dynamically

➥ fine grained cyclic or random mapping

➥ results (most likely) in a good load balancing, even when

the load changes dynamically

➥ price: usually higher communication cost

2.8.3 Load Balancing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 159

Example: atmospheric model, cyclic mapping

execution
time per
task

high
Day:

low
execution
time per
task

Night:

90S
0

0

90N

180 360

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

➥ Each processor has tasks with high and low computational load

2.8.3 Load Balancing ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 160

Dynamic load balancing

➥ Independent (often dyn. created) tasks (e.g., search problem)

➥ goal: processors do not idle, i.e., always have a task to

process

➥ even at the end of the program, i.e., all processes finish at

the same time

➥ tasks are dynamically allocated to processors and stay there

until their processing is finished

➥ optimal: allocate task with highest processing time first

➥ Communicating tasks (SPMD, e.g., stencil algorithm)

➥ goal: equal computing time between synchronisations

➥ if necessary, tasks are migrated between processors during

their execution

2.8.4 Performance Analysis of Parallel Software

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 161

How to determine performance metrics

➥ Analytical model of the algorithm

➥ approach: determine computation and communication time

➥ T (p) = tcomp + tcomm

➥ computation/communication ratio tcomp/tcomm allows a

rough estimation of performance

➥ requires a computation model (model of the computer

hardware)

➥ Measurement with the real programm

➥ explicit timing measurement in the code

➥ performance analysis tools

2.8.5 Analytical Performance Modelling

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 162

Models for communication time

➥ E.g., for MPI (following Rauber: “Parallele und verteilte Programmierung”)

➥ point-to-point send: t(m) = ts + tw · m
➥ broadcast: t(p,m) = τ · log p + tw · m · log p

➥ Parameters (ts, tw, τ) are obtained via micro benchmarks

➥ selectively measure a single aspect of the system

➥ also allow the deduction of implementation characteristics

➥ fitting, e.g., using the least square method

➥ e.g., for point-to-point send:

PC cluster H-A 4111: ts = 71.5 µs, tw = 8,6 ns
SMP cluster (remote): ts = 25.6 µs, tw = 8,5 ns
SMP cluster (local): ts = 0,35 µs, tw = 0,5 ns

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 163

Example: results of the micro benchmark SKaMPI

s
w

t = 143 µs

Lab H−A 4111
bslab01/02

t = 0.0173 µs

Effects: change in protocol,
TCP segment length, ...

Message length

[µ
s]

R
un

−
tim

e

Ping−pong message
exchange with
MPI_Send / MPI_Recv

Measurement

Model

100

1000

10000

100000

10 100 1000 10000 1e+07

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 164

Communication protocols in MPI

ReceiverSender

Protocol
for short messages

MPI copies
message

MPI_Send

Rendezvous protocol
for long messages

ReceiverSender

message
is directly

MPI_Send

MPI_Recv

written to
destination
buffer

in dest. buffer
MPI_Recv

MPI buffers
message

Header (Sender,
Tag, ...) + Data

Data

OK to send

Header

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (6/15) 165

Example: matrix multiplication

➥ Product C = A · B of two square matrices

➥ Assumption: A, B, C are distributed blockwise on p processors

➥ processor Pij has Aij and Bij and computes Cij

➥ Pij needs Aik and Bkj for k = 1...
√
p

➥ Approach:

➥ all-to-all broadcast of the A blocks in each row of processors

➥ all-to-all broadcast of the B blocks in each column of
processors

➥ computation of Cij =

√
p

∑

k=1

Aik · Bkj

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) x

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 29, 2024

Parallel Processing

Winter Term 2024/25

29.10.2024

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 166

All-to-all broadcast

➥ Required time depends on selected communication structure

➥ This structure may depend on the network structure of the parallel
computer

➥ who can directly communicate with whom?

➥ Example: ring topology

320 1

67 5 4

➥ Cost: ts(p − 1) + twm(p − 1) (m: data length)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 166

All-to-all broadcast

➥ Required time depends on selected communication structure

➥ This structure may depend on the network structure of the parallel
computer

➥ who can directly communicate with whom?

➥ Example: ring topology

320 1

67 5 4

321
0

7 56
4

➥ Cost: ts(p − 1) + twm(p − 1) (m: data length)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 166

All-to-all broadcast

➥ Required time depends on selected communication structure

➥ This structure may depend on the network structure of the parallel
computer

➥ who can directly communicate with whom?

➥ Example: ring topology

0,1 1,2 2,3 3,4

4,55,66,77,0

➥ Cost: ts(p − 1) + twm(p − 1) (m: data length)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 166

All-to-all broadcast

➥ Required time depends on selected communication structure

➥ This structure may depend on the network structure of the parallel
computer

➥ who can directly communicate with whom?

➥ Example: ring topology

0,1 1,2 2,3 3,4

4,55,66,77,0

0

1
2 3 4

5
67

➥ Cost: ts(p − 1) + twm(p − 1) (m: data length)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 166

All-to-all broadcast

➥ Required time depends on selected communication structure

➥ This structure may depend on the network structure of the parallel
computer

➥ who can directly communicate with whom?

➥ Example: ring topology

0,1,2 1,2,3 2,3,4 3,4,5

4,5,65,6,76,7,07,0,1

➥ Cost: ts(p − 1) + twm(p − 1) (m: data length)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 166

All-to-all broadcast

➥ Required time depends on selected communication structure

➥ This structure may depend on the network structure of the parallel
computer

➥ who can directly communicate with whom?

➥ Example: ring topology

0,1,2 1,2,3 2,3,4 3,4,5

4,5,65,6,76,7,07,0,1

01

2
3 4 5

6
7

➥ Cost: ts(p − 1) + twm(p − 1) (m: data length)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 167

All-to-all broadcast ...

➥ Example: communication along a hyper cube

➥ requires only log p steps with p processors

2

6 7

3

5

1

4

0

➥ Cost:

log p
∑

i=1

(ts + 2i−1twm) = ts log p + twm(p − 1)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 167

All-to-all broadcast ...

➥ Example: communication along a hyper cube

➥ requires only log p steps with p processors

2

6 7

3

5

1

4

0

1. Pairwise exchange
in x direction

➥ Cost:

log p
∑

i=1

(ts + 2i−1twm) = ts log p + twm(p − 1)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 167

All-to-all broadcast ...

➥ Example: communication along a hyper cube

➥ requires only log p steps with p processors

0,1

2,3

0,1

2,3

4,5 4,5

6,7 6,7

➥ Cost:

log p
∑

i=1

(ts + 2i−1twm) = ts log p + twm(p − 1)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 167

All-to-all broadcast ...

➥ Example: communication along a hyper cube

➥ requires only log p steps with p processors

0,1

2,3

0,1

2,3

4,5 4,5

6,7 6,7

2. Pairwise exchange
in y direction

➥ Cost:

log p
∑

i=1

(ts + 2i−1twm) = ts log p + twm(p − 1)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 167

All-to-all broadcast ...

➥ Example: communication along a hyper cube

➥ requires only log p steps with p processors

4,5,
6,7

4,5,
6,7

4,5,
6,7

4,5,
6,7

0,1,
2,3

0,1,
2,3

0,1,
2,3

0,1,
2,3

➥ Cost:

log p
∑

i=1

(ts + 2i−1twm) = ts log p + twm(p − 1)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 167

All-to-all broadcast ...

➥ Example: communication along a hyper cube

➥ requires only log p steps with p processors

4,5,
6,7

4,5,
6,7

4,5,
6,7

4,5,
6,7

0,1,
2,3

0,1,
2,3

0,1,
2,3

0,1,
2,3

3. Pairwise exchange
in z direction

➥ Cost:

log p
∑

i=1

(ts + 2i−1twm) = ts log p + twm(p − 1)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 167

All-to-all broadcast ...

➥ Example: communication along a hyper cube

➥ requires only log p steps with p processors

0..7

0..7

0..70..7

0..7

0..7

0..7

0..7

➥ Cost:

log p
∑

i=1

(ts + 2i−1twm) = ts log p + twm(p − 1)

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 168

All-to-all broadcast ...

Lab H−A 4111)
(Data from

t s

t
w

= 71,5 µs

= 8,65 ns
100000 Bytes

100 Bytes

Processors

T
im

e
[m

s]

Hypercube

Ring

1000 Bytes

10000 Bytes

0
10 40 50 60

7

6

5

2

1

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 169

Complete analysis of matrix multiplication

➥ Two all-to-all broadcast steps between
√
p processors

➥ each step concurrently in
√
p rows / columns

➥ Communication time: 2(ts log(
√
p) + tw(n2/p)(

√
p − 1))

➥
√
p multiplications of (n/

√
p) × (n/

√
p) sub-matrices

➥ Computation time: tc
√
p · (n/√p)3 = tcn

3/p

➥ Parallel run-time: T (p) ≈ tcn
3/p + ts log p + 2tw(n2/

√
p)

➥ Sequential run-time: Ts = tcn
3

2.8.5 Analytical Performance Modelling ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 170

Efficiency of matrix multiplication

Processors

E
ff

ic
ie

n
cy

matrix element:
Execution time per

Lab H−A 4111)
(Data from

t s

t
w

= 71,5 µs

= 1.3 nsct

n=5000

n=100

n=500

n=1000

= 69.2 ns

(1 double value)

1

0.8

0.4

0.2

0
10 20 40 50 60

2.8.6 Performance Analysis Tools

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 171

➥ Goal: performance debugging, i.e., finding and eliminating

performance bottlenecks

➥ Method: measurement of different quantities (metrics),

if applicable separated according to:

➥ execution unit (compute node, process, thread)

➥ source code position (procedure, source code line)

➥ time

➥ Tools are very different in their details

➥ method of measurement, required preparation steps,

processing of information, ...

➥ Some tools are also usable to visualise the program execution

2.8.6 Performance Analysis Tools ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 172

Metrics for performance analysis

➥ CPU time (assessment of computing effort)

➥ Wall clock time (includes times where thread is blocked)

➥ Communication time and volume

➥ Metrics of the operating system:

➥ page faults, process switches, system calls, signals

➥ Hardware metrics (only with hardware support in the CPU):

➥ CPU cycles, floating point operations, memory accesses

➥ cache misses, cache invalidations, ...

2.8.6 Performance Analysis Tools ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 173

Sampling (sample based performance analysis)

➥ Program is interrupted periodically

➥ Current value of the program counter is read (and maybe also the

call stack)

➥ The full measurement value is assigned to this place in the

program, e.g., when measuring CPU time:

➥ periodic interruption every 10ms CPU time

➥ CPU time[current PC value] += 10ms

➥ Mapping to source code level is done offline

➥ Result: measurement value for each function / source line

2.8.6 Performance Analysis Tools ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 174

Profiling and tracing (event based performance analysis)

➥ Requires an instrumentation of the programs, e.g., insertion of
measurement code at interesting places

➥ often at the beginning and end of library routines, e.g.,
MPI Recv, MPI Barrier, ...

➥ Tools usually do the instrumentation automatically

➥ typically, the program must be re-compiled or re-linked

➥ Analysis of the results is done during the measurement (profiling)
or after the program execution (tracing)

➥ Result:

➥ measurement value for each measured function (profiling,
tracing)

➥ development of the measurement value over time (tracing)

2.8.6 Performance Analysis Tools ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 175

Example: measurement of cache misses

➥ Basis: hardware counter for cache misses in the processor

➥ Sampling based:

➥ when a certain counter value (e.g., 419) is reached, an

interrupt is triggered

➥ cache misses[current PC value] += 419

➥ Event based:

➥ insertion of code for reading the counters:

old cm = read hw counter(25);

for (j=0;j<1000;j++)

d += a[i][j];

cache misses += read hw counter(25)-old cm;

2.8.6 Performance Analysis Tools ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 176

Pros and cons of the methods

➥ Sampling

➥ low and predictable overhead; reference to source code

➥ limited precision; no resolution in time

➥ Tracing

➥ acquisition of all relevant data with high resolution in time

➥ relatively high overhead; large volumes of data

➥ Profiling

➥ reduced volume of data, but less flexible

2.9 A Design Process for Parallel Programs

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 177

Four design steps:

1. Partitioning

➥ split the problem into many tasks

2. Communication

➥ specify the information flow between the tasks

➥ determine the communication structure

3. Agglomeration

➥ evaluate the performance (tasks, communication structure)

➥ if need be, aggregate tasks into larger tasks

4. Mapping

➥ map the tasks to processors

(See Foster: Designing and Building Parallel Programs, Ch. 2)

2.9 A Design Process for Parallel Programs ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 178

Split the problem

of Tasks
Merging

between tasks
Data exchange

tasks as possible
in as many small

Mapping to
Processors

Degree of
parallelism

G
oal: scalability

perform
ance

G
oal: locality

Problem

Communication

Agglomeration

Partitioning

Mapping

2.9.1 Partitioning

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 179

➥ Goal: split the problem into as many small tasks as possible

Data partitioning (data parallelism)

➥ Tasks specify identical computaions for a part of the data

➥ In general, high degree of parallelism is possible

➥ We can distribute:

➥ input data

➥ output data

➥ intermediate data

➥ In some cases: recursive partitioning (divide and conquer)

➥ Special case: partitioning of search space in search problems

2.9.1 Partitioning ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 180

Example: matrix multiplication

➥ Product C = A · B of two square matrices

➥ cij =
n
∑

k=1

aik · bkj, for all i, j = 1 ... n

➥ This formula also holds when square sub-matrices Aik, Bkj , Cij

are considered instead of single scalar elements

➥ block matrix algorithms:

. = .
+ .

C1,1B1,1

B2,1

A1,1 B1,1

A1,2 B2,1

C1,1
A1,1 A1,2

AA2,1 2,2

=
C

CC2,1 2,2

1,2B

B2,2

1,2

2.9.1 Partitioning ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 181

Example: matrix multiplication ...

➥ Distribution of output data: each task computes a sub-matrix of C

➥ E.g., distribution of C into four sub-matrices

(

A1,1 A1,2

A2,1 A2,2

)

·
(

B1,1 B1,2

B2,1 B2,2

)

→
(

C1,1 C1,2

C2,1 C2,2

)

➥ Results in four independent tasks:

1. C1,1 = A1,1 · B1,1 +A1,2 · B2,1

2. C1,2 = A1,1 · B1,2 +A1,2 · B2,2

3. C2,1 = A2,1 · B1,1 +A2,2 · B2,1

4. C2,2 = A2,1 · B1,2 +A2,2 · B2,2

2.9.1 Partitioning ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 182

Example: matrix multiplication A · B → C

➥ Distribution of intermediate data (higher degree of parallelism)

➥ here: 8 multiplications of sub-matrices

A1,1

A2,1

A1,2

A2,2

B1,1 B1,2

B2,1 B2,2

D D

DD

1,1,1

1,2,21,2,1

D

D D

D2,1,1 2,1,2

2,2,22,2,1

1,1,2

C1,1 C1,2

C2,1 C2,2

+

2.9.1 Partitioning ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 183

Example: minimum of an array

➥ Distribution of input data

➥ each threads computates its local minimum

➥ afterwards: computation of the global minimum

2
3

1
44 53

8 39 8 6 54 8 9 4 8 7 5 7 8 8

2.9.1 Partitioning ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 184

Example: sliding puzzle (partitioning of search space)

Finished!
solution:
Found a

1 2 3 4
5 6

7
8

9 10 11
12131415

1 2 4
5 6

7
8

9 10 11
1213 1415

3
1 2 3 4
5

7
8

9 10 11
1213 1415

6
1 2 3 4
5 6

79 10 11
1213 1415

8
1 2 3 4
5 6 8
9 10 11

1213 1415

7

Task 1 Task 2 Task 3 Task 4

Partitioning of

1 2 3 4
8765

9 10 12
151413
11

the seach space

Goal: find a sequence of

sorted configuration
moves, which leads to a

2.9.1 Partitioning ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 185

Task partitioning (task parallelism)

➥ Tasks are different sub-problems (execution steps) of a problem

➥ E.g., climate model

model

Oceanmodel

Atmosphere model

Hydrological

Land surface model

➥ Tasks can work concurrently or in a pipeline

➥ max. gain: number of sub-problems (typically small)

➥ often in addition to data partitioning

2.9.2 Communication

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 186

➥ Two step approach

➥ definition of the communication structure

➥ who must exchange data with whom?

➥ sometimes complex when using data partitioning

➥ often simple when using task partitioning

➥ definition of the messages to be sent

➥ which data must be exchanged when?

➥ taking data dependences into account

2.9.2 Communication ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 187

Different communication patterns:

➥ Local vs. global communication

➥ lokal: task communicates only with a small set of other tasks
(its “neighbors”)

➥ global: task communicates with many/all other tasks

➥ Structured vs. unstructured communication

➥ structured: regular structure, e.g., grid, tree

➥ Static vs. dynamic communication

➥ dynamic: communication structure is changing during
run-time, depending on computed data

➥ Synchronous vs. asynchronous communication

➥ asynchronous: the task owning the data does not know, when
other tasks need to access it

2.9.2 Communication ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 188

Example for local communication: stencil algorithms

Element of a 2−D grid

Task

➥ Here: 5-point stencil (also others are possible)

➥ Examples: Jacobi or Gauss-Seidel methods, filters for image

processing, ...

2.9.2 Communication ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 189

Example for global communication: N-body problem

Task

F = G m1 * m2
r2
12

Star

in a star cluster:
Motion of stars

1) forces
2) acceleration
3) speed
4) position

➥ The effective force on a star in a star cluster depends on the
masses and locations of all other stars

➥ possible approximation: restriction to relatively close stars

➥ will, however, result in dynamic communication

2.9.2 Communication ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 190

Example for structured / unstructured communication

➥ Structured: stencil algorithms

➥ Unstructured: “unstructured grids”

Lake Superior:
simulation of
pollutant
dispersal

➥ grid points are defined at different density

➥ edges: neighborhood relation (communication)

2.9.3 Agglomeration

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (7/15) 191

➥ So far: abstract parallel algorithms

➥ Now: concrete formulation for real computers

➥ limited number of processors

➥ costs for communication, process creation, process switching,

...

➥ Goals:

➥ reducing the communication costs

➥ aggregation of tasks

➥ replication of data and/or computation

➥ retaining the flexibility

➥ sufficently fine-grained parallelism for mapping phase

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) xi

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 29, 2024

Parallel Processing

Winter Term 2024/25

04.11.2024

2.9.4 Mapping

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 192

➥ Task: assignment of tasks to available processors

➥ Goal: minimizing the execution time

➥ Two (conflicting) strategies:

➥ map concurrently executable tasks to different processors

➥ high degree of parallelism

➥ map communicating tasks to the same processor

➥ higher locality (less communication)

➥ Constraint: load balancing

➥ (roughly) the same computing effort for each processor

➥ The mapping problem is NP complete

2.9.4 Mapping ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 193

Variants of mapping techniques

➥ Static mapping

➥ fixed assignment of tasks to processors when program is
started

➥ for algorithms on arrays or Cartesian grids:

➥ often manually, e.g., block wise or cyclic distribution

➥ for unstructured grids:

➥ graph partitioning algorithms, e.g., greedy, recursive
coordinate bisection, recursive spectral bisection, ...

➥ Dynamic mapping (dynamic load balancing)

➥ assignment of tasks to processors at runtime

➥ variants:
➥ tasks stay on their processor until their execution ends

➥ task migration is possible during runtime

2.9.4 Mapping ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Parallel Processing (8/15) 194

Example: static mapping with unstructured grid

➥ (Roughly) the same number of grid points per processor

➥ Short boundaries: small amount of communication

	2 Basics of Parallel Processing
	2.1 Motivation
	2.2 Parallelism
	2.3 Parallelisation and Data Dependences
	2.4 Parallel Computer Architectures
	2.4.1 MIMD: Message Passing Systems
	2.4.2 MIMD: Shared Memory Systems
	2.4.3 SIMD
	2.4.4 High Performance Supercomputers

	2.5 Parallel Programming Models
	2.5.1 Shared Memory
	2.5.2 Message Passing
	2.5.3 Distributed Objects
	2.5.4 Data Parallel Languages

	2.6 Focus of this Lecture
	2.7 Organisation Forms for Parallel Programs
	2.7.1 Embarrassingly Parallel
	2.7.2 Manager/Worker Model (Master/Slave Model)
	2.7.3 Work Pool Model (Task Pool Model)
	2.7.4 Divide and Conquer
	2.7.5 Data parallel Model: SPMD
	2.7.6 Fork/Join Model
	2.7.7 Task-Graph Model
	2.7.8 Pipeline Model

	2.8 Performance Considerations
	2.8.1 Performance Metrics
	2.8.2 Reasons for Performance Loss
	2.8.3 Load Balancing
	2.8.4 Performance Analysis of Parallel Software
	2.8.5 Analytical Performance Modelling
	2.8.6 Performance Analysis Tools

	2.9 A Design Process for Parallel Programs
	2.9.1 Partitioning
	2.9.2 Communication
	2.9.3 Agglomeration
	2.9.4 Mapping

