

Parallel Processing

Winter Term 2024/25

Roland Wismüller Universität Siegen roland.wismueller@uni-siegen.de Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 10, 2024

Parallel Processing

Winter Term 2024/25

0 Organisation

About Myself

- Studies in Computer Science, Techn. Univ. Munich
 - Ph.D. in 1994, state doctorate in 2001
- Since 2004 Prof. for Operating Systems and Distributed Systems
- Research: Secure component based systems; Using generative Al for teaching; Parallel and distributed systems
- Head of Examination Board
- ► E-mail: roland.wismueller@uni-siegen.de
- **→ Tel.:** 0271/740-4050
- **→ Room:** H-B 8404
- **→ Office Hour:** Mo., 14:15-15:15

About the Chair "Operating Systems / Distrib. Sys."

Andreas Hoffmann andreas.hoffmann@uni-... 0271/740-4047 H-B 8405

- → IT security
- Mobile applications

Felix Breitweiser
felix.breitweiser@uni-...
0271/740-4719
H-B 8406

- Operating systems
- Programming languages
- Virtual machines

Sven Jacobs sven.jacobs@uni-... 0271/740-2533 H-B 8407

- → E-assessment and e-labs
- Generative artificial intelligence
- Web technologies

Teaching

Lectures/Labs

- Rechnernetze I, 6 CP (Bachelor, summer term)
- Rechnernetze Praktikum, 6 CP (Bachelor, winter term)
- Rechnernetze II, 6 CP (Master, summer term)
- Betriebssysteme und nebenläufige Programmierung, 6 CP (Bachelor, summer term)
- Parallel processing, 6 CP (Master, winter term)
- Distributed systems, 6 CP (Bachelor, winter term)

Teaching ...

Project Groups

- e.g., secure cooperation of software components
- e.g., concepts for secure management of Linux-based thin clients

Theses (Bachelor, Master)

Topic areas: secure virtual machine, parallel computing, pattern recognition in sensor data, e-assessment, ...

Seminars

- → Topic areas: IT security, programming languages, pattern recognition in sensor data, ...
- Procedure: block seminar (30 min. talk, 5000 words paper)
- Master: attend the lecture "Scientific Working" beforehand!
 - block course end of Feb. / beginning of March

About the Lecture

Lecture

- → Mon., 12:15-13:45, AR-B 2104/05
- on 08.10., 15.10., 22.10., and 29.10. also in the lab slot!
 - Tue., 10:15-11:45, H-C 6321

Practical labs

- Preferrably at home
 - if necessary, you can also use the PC lab room H-A 4111
- → Tutor: Felix Breitweiser (felix.breitweiser@uni-siegen.de)
- Questions and help: via Discord server
 - https://discord.gg/UZTv8yptqj
- Discussion of solutions: Tue., 10:15-11:45, H-C 6321
 - only on the due date of an assignment!

About the Lecture ...

Information, slides, and announcements

- See the WWW page for this course
- http://www.bs.informatik.uni-siegen.de/lehre/pv/
- Annotated slides (PDF) available; maybe slightly modified

Moodle course

- → https://moodle.uni-siegen.de/course/view.php?id=23366
- Recorded screen casts of the lecture (from winter term 2020/21)
- Submission of lab assignments

About the Lecture ...

Discord invite link

Link to course's homepage

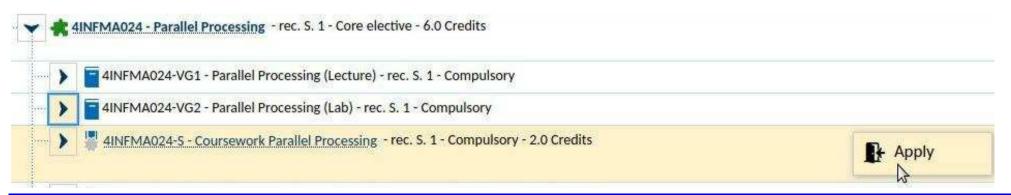
About the Lecture ...

Learning targets

- Knowing the basics, techniques, methods, and tools of parallel programming
- Basic knowledge about parallel computer architectures
- Practical experiences with parallel programming
- Knowing and being able to use the most important programming models
- Knowing about the possibilities, difficulties and limits of parallel processing
- Being able to identify and select promising strategies for parallelization
- Focus: high performance computing

About the Lecture ...

Methodology


- Lecture: Basics
 - theoretical knowledge about parallel processing
 - practical introduction to programming environments
 - "hands-on" tutorials
- Lab: practical use
 - independent programming work
 - practical skills and experiences
 - in addition: raising questions
 - different parallelizations of two representative problems
 - iterative, numerical method (Jacobi, Gauss/Seidel)
 - combinatoral search (Sokoban)

Registration for "Course Achievement" (Studienleistung

- → Passing the course requires successful completion of the lab:
 - i.e., qualified attempt for all mandatory exercises
 - Exam Regulations 2012: prerequisite for the exam!
- You must register for the
 - "Coursework Parallel Processing" 4INFMA024-S, or
 - "Prüfungsvorleistung" 822120-S

in unisono before you can submit a solution! (do it right now!)

- independent of the registration to the course and the lab!
- if you cannot complete the course: deregister again!

Examination

- Written examination (60 minutes)
 - electronic exam, computers provided by university
 - subject matter: lecture and labs!
 - examination also covers the practical exercises
- Application via unisono
 - at least two weeks before the exam date (hard deadline!)
 - exam date is published via unisono and course web page
 - if you study Computer Science with Exam Regulations 2012, you first must have your mentor's approval
 - be sure to meet the deadline!

Organisational Issues regarding the Labs

- Assignments should be done at home, if possible
- Programming is done in C/C++
- Ideally, you need a Linux-PC with the GNU-compilers (gcc/g++)
 - Windows with MSVC will also work, except for one exercise sheet
- In addition, you need to install MPI, preferrable MPICH
 - ⇒ see https://www.mpich.org/downloads
- Four exercise sheets
 - code must be submitted via Moodle in due time
 - different requirements depending on 5 CP vs. 6 CP

Contents of the Lecture

- Repetition / Foundations
 - C/C++ for Java programmers
 - Threads and synchronisation
 - → C++ threads
- Basics of Parallel Processing
 - Motivation, Parallelism
 - Parallelization and Data Dependences
 - Parallel Computers
 - Programming Models
 - Organisation Forms for Parallel Programs
 - Performance Considerations
 - Design Process

Contents of the Lecture ...

- Parallel Programming with Shared Memory
 - Basics
 - OpenMP
- Parallel Programming with Message Passing
 - Approach
 - → MPI
- Optimization Techniques
 - Cache Optimization
 - Optimization of Communication

Time Table of Lecture and Labs

- → Until October, 29th: only lectures (Mon. + Tue.), no lab
- → Then: lectures (Mon.) and lab (home work + Tue.)
- Last two weeks: only lab
- Prospective due dates for the assignments:
 - 05.11.: Exercise sheet 1
 - ... (see web page)
 - 28.01.: Exercise sheet 8
 - On due date: presentation and discussion of assignments in H-C 6321

General Literature

- Currently no recommendation for a all-embracing text book
- Barry Wilkinson, Michael Allen: Parallel Programming. internat. ed, 2. ed., Pearson Education international, 2005.
 - covers most parts of the lecture, many examples
 - short references for MPI, PThreads, OpenMP
- A. Grama, A. Gupta, G. Karypis, V. Kumar: Introduction to Parallel Computing, 2nd Edition, Pearson, 2003.
 - much about design, communication, parallel algorithms
- Thomas Rauber, Gudula Rünger: Parallele Programmierung.
 - 2. Auflage, Springer, 2007.
 - architecture, programming, run-time analysis, algorithms

General Literature ...

- Theo Ungerer: Parallelrechner und parallele Programmierung, Spektrum, Akad. Verl., 1997.
 - much about parallel hardware and operating systems
 - also basics of programming (MPI) and compiler techniques
- Ian Foster: Designing and Building Parallel Programs, Addison-Wesley, 1995.
 - design of parallel programs, case studies, MPI
- Seyed Roosta: Parallel Processing and Parallel Algorithms, Springer, 2000.
 - mostly algorithms (design, examples)
 - also many other approaches to parallel programming

Literature for Special Topics

- S. Hoffmann, R.Lienhart: *OpenMP*, Springer, 2008.
 - handy pocketbook on OpenMP
- W. Gropp, E. Lusk, A. Skjellum: Using MPI, MIT Press, 1994.
 - the definitive book on MPI
- D.E. Culler, J.P. Singh: Parallel Computer Architecture A Hardware / Software Approach. Morgan Kaufmann, 1999.
 - UMA/NUMA systems, cache coherency, memory consistency
- Michael Wolfe: Optimizing Supercompilers for Supercomputers, MIT Press, 1989.
 - details on parallelizing compilers