
Prof. Dr. rer. nat. Roland Wismüller

Excercise Sheet 8
(To be processed until 28.01.)

Lecture Parallel Processing

Winter Term 2024/25

Exercise 1: Parallelization of the Jacobi method using MPI (Compulsory Exercise, Weight 3!

Submit until Tuesday, January 28th, 10:00 via moodle ) (19e)

The sequential code in the files heat.cpp and solver-jacobi.cpp (in the archive u08eFiles.zip1 on the

lecture’s web page) shall be parallelized using MPI step by step (the code is identical to that of Exercise 1 on Exercise

Sheet 4).

a) Parallelize only the main() function and the solver() function. For now, please ignore the file output of the

matrix (function Write Matrix()), i.e., comment out the call in main(). However, make sure that the control

values are output correctly at the end of main(). In the case of correct parallelization, the output values must

correspond exactly to those of the sequential version!

You can distribute the matrix in one dimension only (strip-wise, i.e., contiguous blocks of rows, see Sect. 4.9 of the

lecture slides) or in both dimensions (see last slide of Sect. 4.1 of the lecture). The strip-wise distribution is (much)

simpler, but the block-wise one (with larger process numbers) possibly more efficiently. Ideally, your partitioning

should work for all matrix sizes and process numbers (see Sect. 4.9 of the lecture slides and the example code

vecmult3.cpp2).

b) Extend your program such that after the computation, the matrix is written correctly to the file Matrix.txt using

Write Matrix(). Since you will not have a parallel file system, do not use any of the MPI I/O routines, but

rather let each process send its part of the matrix to process 0, which appends it to the file. Since the matrix is large,

avoid storing the complete matrix in process 0!

Note that you may have to extend the interfaces of the functions solver() and Write Matrix() with additional

parameters.

Measure how much time your program needs. Try different values for the matrix size (reference values: 500, 2000 and

6000) and measure the speedup with different (2 to 16, possibly even more) processes.

If necessary, do a more detailed performance analysis (if possible, using Scalasca) and try to optimize your program as

much as possible, e.g., by using non-blocking receive operations.

Exercise 2: Parallelization of the Gauss/Seidel method using MPI (For Motivated Students) (20e)

In this exercise, you shall parallelize the code for the Gauss/Seidel method, as provided in the file solver-gauss.cpp

(in the archive u08eFiles.zip3 on the lecture’s web page) using MPI (the code is identical to that of Exercise 3 on

Exercise Sheet 4).

For simplicity, the function solver() in this version performs a fixed number of iterations, calculated in advance from

the precision parameter. This allows pipelined parallelization (where in contrast to the OpenMP parallelization using

diagonal traversal, the i and j loops are not rewritten, see Sect. 4.9 of the lecture slides). For example, process 0 sends

its last row to process 1 after each iteration, and then waits for the first row of process 1. Process 1 can (and must) send

this row immediately after its calculation.

1http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u08eFiles.zip
2https://www.bs.informatik.uni-siegen.de/web/wismueller/vl/gen/pv/03Code.zip
3http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u08eFiles.zip

1

https://moodle.uni-siegen.de/mod/assign/view.php?id=1318474
http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u08eFiles.zip
https://www.bs.informatik.uni-siegen.de/web/wismueller/vl/gen/pv/03Code.zip
http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u08eFiles.zip


Before you start programming, first consider exactly which communications are necessary and how the sequence of the

calculations and communications should look like! Also note that you may need to add additional parameters to the

interface of the solver() function.

Measure how much time your program needs. Try different values for the matrix size (reference values: 500, 2000 and

6000) and measure the speedup with different (2 to 16, possibly even more) processes.

If necessary, do a more detailed performance analysis (if possible, using Scalasca) and try to optimize your program as

much as possible, e.g., by using non-blocking receive operations.

Exercise 3: Acquaint yourself with the electronic exam system (99e)

The exam for this module will be conducted electronically using the Q-Exam system. The computers (laptops) will be

provided by the university.

To get acquainted with the system, please have a look at the provided demo exam4 (select the exam named “Demo-

Prüfung Parallelverarbeitung”) and the screen casts provided in the moodle course5! If you have questions or problems,

please contact the e-assessment support team (e-klausuren@uni-siegen.de). You can also ask questions immediately before

the exam starts.

Please notice that the laptops provide a German keyboard. The ’#’ key is located left of the ’Enter’ key, ’{’, ’}’, ’[’, and

’]’ can be entered by pressing the ’AltGr’ key (right of the ’Space’ key) together with ’7’, ’8’, ’9’, or ’0’. The ’Ctrl’ key

is named ’Strg’. Please acquaint yoursef with that layout! An accurate image can be found on wikipedia6. There is also

an interactive simulation7, which, however, differes slightly from the laptop keyboards.

4https://uni-siegen.q-examiner.com/
5https://moodle.uni-siegen.de/course/view.php?id=23366#section-6
6https://en.wikipedia.org/wiki/German keyboard layout
7https://www.branah.com/german

2

https://uni-siegen.q-examiner.com/
https://moodle.uni-siegen.de/course/view.php?id=23366#section-6
https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Deutsche_Tastaturbelegung_T1_nach_DIN_2137-01--2018-12.png/1280px-Deutsche_Tastaturbelegung_T1_nach_DIN_2137-01--2018-12.png
https://en.wikipedia.org/wiki/German_keyboard_layout
https://www.branah.com/german

