
Prof. Dr. rer. nat. Roland Wismüller

Excercise Sheet 7
(To be processed until 21.01.)

Lecture Parallel Processing

Winter Term 2024/25

Exercise 1: Point to point communication with MPI (15e)

Modify the code in point2point.cpp (in the archive u07eFiles.zip1 on the lecture’s web page), such that at the

indicated position

• Process 1 sends the contents of variable myval to process 3, that receives it in myval,

• Process 2 sends the contents of variable myval to process 0, that receives it in myval.

Thus, with the given initialization, the value printed by process 3 at the end of the program should be 1, the value printed

by process 0 should be 2.

Note that this exercise checks for MPI skills in a way comparable to an exercise in the exam!

Exercise 2: Parallelization of a map operation using MPI (16e)

Parallelize the code in map.cpp in the archive u07eFiles.zip2 on the lecture’s web page! Note that only process

0 should initialize the array x, and only process 0 should check the result at the end. The application of the function

complex fct() on the input array x should be distributed to all processes. Note that complex fct() is a pure

function that does not have any side effects.

For simplicity, you can assume that the array size can be evenly divided by the number of processes (with the given size

of 10000 elements, this is the case for 1, 2, 4, 8, and 16 processes). Do not modify any code in fcts.cpp!

Note that this exercise checks for MPI skills in a way comparable to an exercise in the exam!

Exercise 3: Parallelization of a simple optimization code with MPI (Compulsory Exercise, Weight 2!

Submit until Tuesday, January 21st, 10:00 via moodle ) (17e)

In this exercise, we revisit the optimization code of Exercise 3 on Exercise Sheet 3 and Exercise 1 on Exercise Sheet 5.

The code is given again in the archive u07eFiles.zip3 on the lecture’s web page.

a) Parallelize the code in optimize1.cpp. Your program should always use four MPI processes, where each pro-

cess computes one configuration. At the end, you should compute the final minimum using MPI Reduce().

b) Parallelize the code in optimize2.cpp. Since the execution time of computeCost() shows a high variation,

use the manager/worker model (see Sect. 2.7.2 of the lecture slides).

Process 0 should be the manager, that sends tasks descriptions to the workers and receives their result. In this

code, the task description simply is the number of the configuration to be evaluated (i.e., the argument passed to

computeCost()). Once a result has been received from a worker, the next task description is sent to that worker.

In case the manager is running out of tasks (i.e., all 100 tasks have already been sent), this task description should

contain a special value (e.g., a number ≥ 100) that instructs the worker to terminate.

1http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u07eFiles.zip
2http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u07eFiles.zip
3http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u07eFiles.zip

1

http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u07eFiles.zip
http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u07eFiles.zip
https://moodle.uni-siegen.de/mod/assign/view.php?id=1313669
http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u07eFiles.zip


In both files optimize1.cpp and optimize2.cpp, the code to initialize MPI is already given. Do not modify any

code in functions.cpp!

Exercise 4: Numerical integration using MPI (18e)

Parallelize the code in integrate.cpp (in the archive u07eFiles.zip4 on the lecture’s web page, identical to that

of Exercise 4 on Exercise Sheet 3) with MPI using a reduction (MPI Reduce()). The initialization of MPI is already

given. Measure the speedup with different values for the number of intervals and different numbers of processes. Interpret

your results.

4http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u07eFiles.zip

2

http://www.bs.informatik.uni-siegen.de/web/wismueller/vl/pv/u07eFiles.zip

