d

Parallel Processing - Tutorials

Roland Wismuiller
Universitat Siegen
roland.wismueller@ uni-siegen.de
Tel.: 0271/740-4050, Biro: H-B 8404

Stand: October 31, 2025

&=~ Roland Wismdiller ; ; i
T=.I% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) I

Contents

1 Computing Environment (H-A 4111) 2

2 Tools for OpenMP 9
21 Compiling 10
22 Executing. Lo 11
2.3 Debuggingo 12
2.4 Performance Analysis 20

3 GPU Programming with OpenMP 24
3.1 Compilation o0 25
3.2 NVidia Nsight Compute 26

4 Working with MPI

1-2

36

Parallel Processing - Tutorials

1 Computing Environment (H-A 4111)

=== Roland Wismduiller i i
=== Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

1 Computing Environment (H-A 4111) ... ‘I

Overview of the Lab

Internet / group network (bs.informatik.uni-siegen.de)

Lab network 1 Gbit/s Ethernet

I L 4.

19 workstations: bslab01 - bslab19

Intel Core Ultra 7, 8+12 cores, 5.2/4.6 GHz, 32 GiB RAM
+ RTX 4060, 3072 cores, 1.8 GHz, 8 GiB RAM

[T Ettp sftp (only via Uni-VPN) J]
ﬁgps bslabserver.bs.informatik.uni-siegen.de
= File (=
— Proxy Server |=

=== Roland Wismduiller ; ;
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 3

1 Computing Environment (H-A 4111) ... n

Software Environment
w OS: Linux Debian 12, Kernel 6.1.0

= Compiler:
= GNU g++, version 12.2
= fully supports OpenMP 4.5, partial support for OpenMP 5.0
w NVIDIA nvc++, version 25.7
= supports most of OpenMP 4.5, plus subset of OpenMP 5.0

= Debugging: gdb (only for code compiled with g++)

= Performance analysis:
= scalasca, version 2.6.2 (for OpenMP and MPI)
= NVIDIA Nsight Compute, ncu-ui, version 2025.2.1 (for GPU)

==T" Roland Wismdiller . .
*_L= Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 4

1 Computing Environment (H-A 4111) ... ‘I

Software Environment ...

= MPI: MPICH version 4.2.3
= implements MPI version 4.1

Enabling / Switching Environments
= Default environment: g++ with OpenMP

= NVIDIA environment: nvc++ with OpenMP and GPU offloading
= {0 enable: module load nvhpc
w {0 return to default: module unload nvhpc

= PV environment: MPI and/or Scalasca
= not compatible with NVIDIA environment!
= {0 enable: module load pv
= {0 disable: module unload pv

===" Roland Wismdiller ; ;
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 5

1 Computing Environment (H-A 4111) ... n

Some Useful Tools

= lstopo

= shows CPU cores plus cache size for each cache level

= taskset
= allows to define the core(s) where a program should start
w taskset -c 0-7 prog # execute prog on performance cores
= taskset -c 8-19 prog # execute prog on efficiency cores

= nvtop
= shows GPU usage and processes using the GPU

==T" Roland Wismdiller . .
*_L= Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 6

1 Computing Environment (H-A 4111) ... ‘I

CPU: Intel Core Ultra 7 265

= 8 Performance Cores (0-7):
= max. 5.2 GHz
= 48 KB L1 Data Cache, 3 MB L2 Cache

= 12 Efficiency Cores (8-20):
w max. 4.6 GHz
w 32 KB L1 Data Cache, 4 cores share 4 MB L2 Cache

30 MB shared L3 Cache

!

= Theoretical peak performance of one performance core:
83 GFlop/s (64-bit)

= Maximum memory bandwitdh: 89 GB/s

=TT Roland Wismdiller . :
—+= Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 7

Notes for slide 7:

Concerning the peak performance of a performance core:
= AVX-2 allows registers to hold four 64-bit FP numbers.
= The core can issue up to two fused-multiply-add instructions per cycle.
= |n theory, this allows upt0 5.2 * 4 * 2 * 2 = 83.2 GFlop/s.

Concerning memory throughput:
= The Intel Core Ultra 7 265 supports two memory channels (64 bit wide).
= The memory in our PCs is DDR5 with 5600 MT/s.
w Thus, max. bandwidth is 5.6 * 2 * 64 / 8 = 89.6 GB/s.

7-1

1 Computing Environment (H-A 4111) ...

GPU: NVidia RTX 4060, ADA architecture, AD107
w 24 Streaming Multiprocessors (SM)

= 3072 FP32 cores, 48 FP64 cores

= max. 1.8 GHz

= 65536 Registers per SM

= Theoretical peak performance:
w 15.11 TFlop/s (FP32)
= 236.2 GFlop/s (FP64)

= Theoretical memory throughput: 272 GB/s

=== Roland Wismduiller i P
Z=_2= Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

Parallel Processing - Tutorials

2 Tools for OpenMP

==T" Roland Wismdiller : .
_1 Betricbssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

2 Tools for OpenMP ... ‘I

2.1 Compiling
= Two alternative Compilers in the lab H-A 4111: g++ and nvc++

w To use nvc++, load the corresponding module:

= module load nvhpc

= |n order to return to using g++, unload the module:
= module unload nvhpc

= Compilation:
= g++ -fopenmp myProg.cpp —-o myProg
or

= nvc++ -mp myProg.cpp —-o myProg

= Add option -0’ or ’-03’ for optimization

===" Roland Wismdiller . -
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 10

2 Tools for OpenMP ... n

2.2 Executing

= |dentical to sequential programs, e.g.:
w _/myProg
= (Maximum) number of threads can be defined in environment
variable OMP_NUM_THREADS:
= cxport OMP_NUM_THREADS=4
= applies to all programs started in the same shell

= Temporary (re-)definition of OMP_NUM_THREADS:
w OMP_NUM_THREADS=2 ./myProg
= useful, e.g., for speedup measurements

=="" Rol Wismdll : ;
i3 Bgtﬁggssg[[g%\g " verteilte Systeme Parallel Processing - Tutorials (1) 11

2 Tools for OpenMP ... ‘I

2.3 Debugging

= There are only few debuggers that fully support OpenMP
= e.g., Totalview
= requires tight cooperation between compiler and debugger
= not available in the lab H-A 4111

= |n the lab H-A 4111 (and other Linux PCs):
= odb allows halfway reasonable debugging
= as it supports multiple threads
= odb is the standard LINUX debugger
= text based, no GUI

=== Roland Wismduiller . -
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 12

2.3 Debugging ... n

w Prerequisite: compilation with debugging information
= sequential: g++ -g -o myProg myProg.cpp
w with OpenMP: g++ -g -fopenmp ...
= Limited(!) debugging is also possible in combination with
optimization
= however, the debugger may show unexpected behavior
w if possible: switch off the optimization
= g++ -g -00 ...

=2"* Rol Wismuill : ;
i3 Bgtﬁggssg[[g%g " verteilte Systeme Parallel Processing - Tutorials (1) 13

2.3 Debugging ... ‘I

Important functions of a debugger (Examples for gdb):

w Start the programm: run argl arg?2

Set breakpoints on code lines: break file.cpp:35

Set breakpoints on functions: break myFunc

Show the procedure call stack: where

Navigate in the procedure call stack: up bzw. down
Show the contents of variables: print i

Change the contents of variables: set variable i=i*15

Continue the program (after a breakpoint): continue

§ £ 0 0 5 1 0

Single-step execution: step bzw. next

%7 Roland Wismdill ; ;
S 3 Bgtﬁgbssﬁ?é%g'} verteilte Systeme Parallel Processing - Tutorials (1) 14

2.3 Debugging ... n

Important functions of a debugger (Examples for gdb): ...
w Show all threads: info threads

= Select a thread: thread 2
= subsequent commands typically only affect the selected thread

w Source code listing: list
= Help: help

w Exit the debugger: quit

= All commands can also be abbreviated in gdb

..:i' Eg’!ﬁggsvsv)llg[[g%lg " verteilte Systeme Parallel Processing - Tutorials (1) 15

2.3 Debugging ... ‘I

Sample session with gdb (sequential)

bsclk01> g++ -g -00 -o ross ross.cpp < Option -g for debugging
bsclk01> gdb ./ross

GNU gdb 6.6

Copyright 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public ...
(gdb) b main < Set breakpoint on function main

Breakpoint 1 at 0x400400: file ross.cpp, line 289.

(gdb) run 5 5 0 <« Start program with given arguments

Starting program: /home/wismueller/LEHRE/pv/ross 5 5 0
Breakpoint 1, main (argc=4, argv=0x7fff0a131488) at ross.cpp:289
289 if (argc !'= 4) {

(gdb) 1list < Listing around the current line

284
285 /*
286 ** Get and check the command line arguments

3 5 Egtlﬁggsvsvﬁgﬂlg"/ verteilte Systeme Parallel Processing - Tutorials (1) 16
2.3 Debugging ... n
287 */

288

289 if (argec != 4) {

290 cerr << "Usage: ross <size_x> <size_y> ...
291 cerr << " <size_x> <size_y>: size...
292 cerr << " <all>: O = compute omne ...
293 cerr << " 1 = compute all ...

(gdb) b 315 < Set breakpoint on line 315
Breakpoint 2 at 0x400e59: file ross.cpp, line 315.
(gdb) ¢ <« Continue the program

Continuing.

Breakpoint 2, main (argc=4, argv=0x7fff0a131488) at ross.cpp:315
315 num_moves = Find_Route(size_x, size_y, moves);

(gdb) n < Execute next source line (here: 315)

320 if (num_moves >= 0) {

(gdb) p nummoves < Print contents of num moves

$1 = 24

=="" Rol Wismuill : ;
i3 Bgtﬁggssg[[g%\g I’/ verteilte Systeme Parallel Processing - Tutorials (1) 17

2.3 Debugging ... ‘I

(gdb) where <— Where is the program currently stopped?

#0 main (argc=4, argv=0x7fff0al131488) at ross.cpp:320
(gdb) ¢ <« Continue program

Continuing.

Solution:

Program exited normally.
(gdb) q < exitgdb
bsclk01>

- -- 3 Egtlﬁggsvsv)ig?é%lg r/ verteilte Systeme Parallel Processing - Tutorials (1) 18
2.3 Debugging ... n

Sample session with gdb (OpenMP)

bslab03> g++ -fopenmp -00 -g -o heat heat.cpp solver-jacobi.cpp
bslab03> gdb ./heat
GNU gdb (GDB) SUSE (7.5.1-2.1.1)

(gdb) run 500

Program received signal SIGFPE, Arithmetic exception.
0x0000000000401711 in solver._omp_fn.0 () at solver-jacobi.cpp:58

58 bli]l [j] = i/(i-100);
(gdb) info threads
Id Target Id Frame
4 Thread ... (LWP 6429) ... in ... at solver-jacobi.cpp:59
3 Thread ... (LWP 6428) ... in ... at solver-jacobi.cpp:59
2 Thread ... (LWP 6427) ... in ... at solver-jacobi.cpp:63
*x 1 Thread ... (LWP 6423) ... in ... at solver-jacobi.cpp:58
(gdb) q

=="" Rol Wismuill : ;
i3 Bgtﬁggssg[[g%\g r/ verteilte Systeme Parallel Processing - Tutorials (1) 19

2 Tools for OpenMP ... ‘I

2.4 Performance Analysis

= Typically: instrumentation of the generated executable code
during/after the compilation
= insertion of code at important places in the program

= in order monitor relevant events
= e.g., at the beginning/end of parallel regions, barriers, ...

= during the execution, the events will be

= individually logged in a trace file (Spurdatei)
= or already summarized into a profile

= evaluation is done after the program terminates
= c.f. Section 2.9.6 of the lecture
= Example: Scalasca

= see https://www.scalasca.org/scalasca/software

- -- 3 Egtlﬁggs\/sv}igg%lg " verteilte Systeme Parallel Processing - Tutorials (1) 20
2.4 Performance Analysis ... n

Performance analysis using Scalasca

= | oad the pv module to set the paths etc.:

= module load pv

= Compile the program:

= scalasca -instrument g++ —-fopenmp ... barrier.cpp

= Execute the program:
w scalasca -analyze ./barrrier
w stores data in a directory scorep_barrier_0x0_sum

= 0x0 indicates the number of threads (0 = default)
= directory must not yet exist; remove it, if necessary

= |nteractive analysis of the recorded data:

= scalasca -examine scorep_barrier_0xO_sum

=== Roland Wismdll - -
i3 Bgtﬁggssg[[g%g r/ verteilte Systeme Parallel Processing - Tutorials (1) 21

https://www.scalasca.org/scalasca/software

Notes for slide 21:

If you want to use Scalasca at home, you can download an appliance for Oracle Virtu-
alBox, which includes Linux, g++ compilers, OpenMP, MPI, Scalasca and Visual Studio
Code with g++ plugins.

See https://moodle.uni-siegen.de/mod/url/view.php?id=884597.

21-1

2.4 Performance Analysis ... "

Scalasca: Example from Sect. 3.3.5

File Display Plugins Help

Restore Setting + Save Settings

| Absolute | | Absolute *| |Absolute &
Metric tree E Call tree Flat view E System tree m BoxPlot
¥ [0.00 Time (sec) . ¥ [0.00 main - ¥ [- machine Linux
¥ [7.21 Execution v [0.00 !'$omp parallel @barrier.c:24 ¥ [- node bspc02
* [0.00 'Somp for @barrier.c:28 v [- Process
O 0.00 Overhead O 2.71 !Somp implicit barrier @barrier.c:33 0.00 Master thread
3 0.00 Idle threads ¥ [0.00 'Somp for @barrier.c:36 0.11 OMP thread 1
49 Visits (occ) [E 2.90 !Somp implicit barrier @barrier.c:41 0.22 OMP thread 2
» [0 Synchronizations (occ) 0.00 !'Somp implicit barrier @barrier.c:43 O 0.32 OMP thread 3
» [0 0 Communications (occ) @ 0.38 OMP thread 4
» [0 Bytes transferred (bytes) [0.50 OMP thread 5
» [0 MPI file operations (occ) [0.62 OMP thread 6
» W 3.25 Computational imbalance (sec) O 0.75 OMP thread 7
0.00 Minimum Inclusive Time (sec)

1.60 Maximum Inclusive Time (sec)

. . . | All (8 elements) &
0.00 5.62 (43.78%) 12.83| (0.00 2.90 (51.69%) 5.62| (0.00 2.90
(=)

===+ Rol Wismdill ; ;
S Bgtﬁggss;ig}‘ng r/ verteilte Systeme Parallel Processing - Tutorials (1) 22

https://moodle.uni-siegen.de/mod/url/view.php?id=884597

2.4 Performance Analysis ... "

Scalasca: Example from Sect. 3.3.5 ...

= |n the example, the waiting time at barriers in the first loop can be
reduced drastically by using the option nowait:

Absolute +| | Absolute + | | Absolute =
Metric tree Call tree Flat view System tree ‘] BoxPlot
¥ [0.00 Time (sec) ¥ [0.00 main ¥ O -machinelinux
v 7.97 Execution ¥ [l 0.00 !Somp parallel @barrier.c24 ¥ [- node bspc02
O 0.00 'Somp for @barrier.c:28 v [0 -Process
O 0.00 Overhead ¥ [0.00 'Somp for @barrier.c:36 @ 0.03 Master thread
3 0.00 Idle threads 0.15 !Somp implicit barrier @barrier.c:41 [0.03 OMP thread 1
41 Visits (occ) 0.00 'Somp implicit barrier @barrier.c:43 = 0.03 OMP thread 2
» [0 Synchronizations (occ) [0.02 OMP thread 3
» [0 Communications (occ) [0.02 OMP thread 4
» [0Bytes transferred (bytes) E 0.01 OMP thread 5
» [0MPI file operations (occ) 0.00 OMP thread 6
» W 3.99 Computational imbalance (sec) 0.00 OMP thread 7

0.00 Minimum Inclusive Time (sec)
1.02 Maximum Inclusive Time (sec)

All (8 elements) &

-

0.00 0.15(1.84%) 8.12| (0.00 0.15 (99.73%) 0.15| (0.00 0.15

!

===" Roland Wismdiller . -
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 23

Notes for slide 23:
When interpreting the times indicated by Scalasca, the following must be observed:

= The metric displayed for an entry (here: time) always excludes the visible sub-
entries. When, e.g., the item “7.97 Execution” in the Metric tree shown in the
screen dump is folded (i.e., no longer visible), Scalasca displays “8.12 Execution”
(0.15s execution time for OMP + 7.97s for the remaining execution).

In the example, you can see that the nowait option has made the time for OpenMP
(synchronization) significantly smaller (0.15s instead of 5.62s), but the pure exe-
cution time has slightly increased (from 7.21s to 7.97s), possibly because of com-
petition for the memory.

= The time that Scalasca displays is the summed execution time of all threads,
including waiting times. In the example, the program actually terminated after
1.3s.

= Scalasca still shows a load imbalance (Computational imbalance), since, e.g.,
thread 7 still calculates much more in the first loop than thread 1. Scalasca is not
able to recognize that this imbalance exactly cancels the corresponding imbalance
in the second loop.

23-1

Parallel Processing - Tutorials

3 GPU Programming with OpenMP

=== Roland Wismduiller i P
Z=_2= Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

3 GPU Programming with OpenMP ...

24

3.1 Compilation
w |nthe lab H-A 4111: use nvc++

= To do so, first load the corresponding module:

= module load nvhpc

= Compilation:
= nvc++ -03 -mp=gpu -gpu=cc89 myProg.cpp —-o myProg
= cc89 specifies Compute Capability 8.9 (for RTX 4060)

= For optimization: try the option '-gpu=cc89 ,maxregcount: N’

= where N specifies the maximum number of registers that a
kernel will use

£2** Roland Wismdiller

=_2= Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

25

Notes for slide 25:
Background on the regcount option:

= |n the Ada architecture (RTX 4060), each SM has 65536 registers, which are
shared by all threads on one SM.

= This means that the number of registers used by a kernel limits the number of
warps on an SM. E.g., if the kernel uses 64 registers, there cannot be more than
32 warps per SM (a warp has 32 threads).

= More warps on an SM increase the occupancy. A higher occupancy is benefi-
cial, because when the threads in the current warp are waiting for, e.g., memory,
the scheduler can choose threads from another warp. This allows better latency
hiding and can increase the performance.

= On the other hand, a smaller register number may require the compiler to spill
registers to memory, which decreases performace.

= Thus, an optimal number of registers must be found experimentally.

The NVidia Nsight Compute tool provides some help in finding the optimal number of
registers (Section 'Occupancy’ in the 'Details’ tab of the Kernel profile).

25-1

3 GPU Programming with OpenMP ... n

3.2 NVidia Nsight Compute
w Performance analysis tool available in the lab room H-A 4111

= Graphical tool for profiling CUDA kernels on an NVIDIA GPUs

= CUDA kernel: function that is executed by multiple threads on
the cores of the GPU

= when using OpenMP, CUDA kernels are generated by the
OpenMP compiler from the code sections marked with a
target directive

5535 Eg}!ﬁggsvsv}gg%lg " verteilte Systeme Parallel Processing - Tutorials (1) 26

3.2 NVidia Nsight Compute ... d

Starting Nsight Compute

w | 0ad the nvhpc module:

= module load nvhpc
= Compile your program, e.g.:

w nvc++ -03 -mp=gpu -gpu=cc89 -o heat heat.cpp ...
w Start the Nsight Compute GUI:

= ncu-uil

=== Roland Wismduiller i ;
Z=_2= Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

3.2 NVidia Nsight Compute ... n

System Level Profiling
w Provides an overview on the utilization of the GPU

= To start the profiling process:
= press 'Start Activity’ in upper left corner of main window
= 3 dialog window opens
= in the "Target Platform’ section, fill in fields
= 'Application Executable’
= "Working Directory’
= 'Command Line Arguments’
= in the ’Activity’ section, select 'System Trace’ on the left side
= in the 'System’ tab, tick 'Collect GPU Metrics’.
= click the 'Launch’ button in the lower right corner

=== Roland Wismduiller . .
=== Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

3.2 NVidia Nsight Compute ...

System Level Profiling ...

Target Platform

' Linux (aarch64 sbsa)

jon: | localhost 3
If\ Linux (x86_64) Connection: ||0caia0d = gk

R Windows Laeneh

Application Executable | heat I+

1

Working Directory | fhomestudent/gl330/25/LOESUNG T+

Command Line Arguments: | 20000 100 [~
Environment: i
Activity
1 Profile Perform the basic system-wide tracing capabilities integrated from Nsight Systems, to obtain
5. Interactive Profile detailed analysis of CPU and GPU interaction in order to identify where and how your application is
limited by the CPU
2 ‘ ’ Start Appllcagn‘ System ’
» Collect GPU context switch trace
» Collect NV Video trace
Sampling rate: = 10kHz
GPUs: | All supported GPUs selected
Metric set: | [ad10x] General Metrics for NVIDIA AD10x (any frequency)
1
Cancel

- Roland Wismuiller

= Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

3.2 NVidia Nsight Compute ...

System Level Profiling ...

Eile Connection Debug Profile Tools Window Help
) Start Activity X ° o e Baselines ¥ » Metric Details Launch Details

| © Expanded sections might not show il body contents by defauit. Use the content selector In section header to select other o all contents. Default selection can be updated using SetDefault property in the section file. X ‘
X

|® Same metric columns are hidden by defaul. Right-clck any column header and use the column chooser to show them.

[Tl [ocuments

QG 4l report2 nsys-rep &) report2.ncu-rep X
Defaultpr | | = Timeline View -||® Dpt;ens = = /A 1 warning, 16 messages
teport1.ng 15 - 1870ms

feport2.ne M
& report1.nc Activity

+890ms +900ms +910ms +920ms +930ms +940ms +950ms +960ms +970ms |~

gl ~ GPU Metrics [10 kHz] franisy
GPC Clack Frequency 285GHz
SYS Clock Frequency 219 GHz
» GPU Active 010 100%
» Compute in Flight 010100%
SMs Active 0t0100%
+ SMinstructions 0to100% h
100% |
+ SM Warp Occupancy
0
+ DRAM Bandwidth 00 100%

» PCle Bandwidth 0to100%

PCle Write Requests to BAR1

Kernel o

Memory
nvkernel_Z6solverPdidl F1L48_6

~ CUDA HW (0000:0

+ 14,8% Memory

Events View - |

| Name -

Description

Right-click a timeline row and select "Show in Events View" to see events here

Roland Wismdiller

Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1)

Notes for slide 30:

In thetimeline diagram, among others, you can examine various GPU metrics (e.g. in-
struction throughput and used DRAM bandwidth). If you open the 'CUDA HW’ timeline,
you can see when kernels are executing or memory transfers between host and target
take place.

30-1

3.2 NVidia Nsight Compute ... "

Kernel Profiling

= Provides more insight into the execution of a kernel executing on
the GPU

= To start a kernel profile:

-

-

in the timeline view, right-click on the box representing the
kernel’s execution

in the popup menu, select 'Profile Kernel’

you will see the 'Start Activity’ window, where 'Profile’ is
already selected

if necessary: fix the kernel's name in the 'Kernel Name’ field of
the 'Filter’ tab

select the 'Metrics’ tab and tick 'detailed’
click the 'Launch’ button in the lower right corner

=7" Roland Wismliller
_1 Betricbssysteme / verteilte Systeme

Parallel Processing - Tutorials (1) 31

Notes for slide 31:

As the current version of Nsight Compute seems to have a bug, you imay have to fix
the kernel’s name, before you can do profiling for that kernel. The kernel name is a
function name for the code contained in an OpenMP target section that is automati-
cally generated by the nvc++ compiler.

In the field ’Kernel Name’ in the 'Filter’ tab, you may see something like
nvkernel__Z6solverPdidi_F11.48__3...

If the name ends with some dots, it is not the correct name. The correct kernel name is

shown in the timeline diagram, when you zoom in:

Kernel |

+ CUDA HW (0000:01:00.0 - NVIDIA Memory

k 15,1% Memory |

nvkernel_ZGsolverPdidi F1L48 6 m

Typically, you will have to replace the trailing '__3. ..’ with '_6’ or some other number.

31-1

3.2 NVidia Nsight Compute ... '-'

Kernel Profiling ...

Target Platform
| &3 Linux (aarch64 sbsa)

I:A Tinux (x86.64) Connection: | localhost - || 4
=& Windows Lattich
Application Executable | heat
Working Directory. /hemestudent/gl930/25/LOESUNG vl]
Command Line Arguments: | 20000100 g
Environment v
A .
lea Profile ~ A o3 S
e Profile an application using the command line profiler. All GPU workloads are serialized. Note: Attach is not supported for
. S this activity.
Occupancy Calculator | | Supported APls: CUDA, OptiX
@ System Trace For more information, consult our docurnentation
Gnn*mLQ Jgsamphng Warp Sampling Other
Metric Sets - £ Reload
MName Sections Metrics i
basic LaunchStats, Occupancy, SpeedOfLight WorkloadDistri.. 191

PmSampling PmSampling_WarpStates 231

| detailed ComputeWorkloadAnalysis LaunchStats MemoryWor... 560
qoTime SpeedOfLight SpeedOfLight_HierarchicalDoubleRoofli.. 5912

full ComputeWarkloadAnalysis InstructionStats LaunchSt.. 6581

Metrics: |Enter metrics, e g. metric metric2

| cancel Reset Activity 5

=="" Rol Wismuill : ;
i3 Bgtﬁggssg[[g%\g I’/ verteilte Systeme Parallel Processing - Tutorials (1) 32

3.2 NVidia Nsight Compute ...

Kernel Profiling ...

Elle Connection Debug Profle Tools Window Help

] Start Activity X L3 Bl 4 Baselines # < > » Metric Details Launch Details

[Expanded sections might not show all body contents by defauit Use the content selector in section header to select other or all contents. Defauit selection can be updated using Setbefault property nthe section ile.

|® some metric columns are hidden by default. Right-click any column header and use the column chooser to show them.

U B Documents

| welcome % _reportz nsysrep x [T

Defautt Pr Result Size

Time Cycles GPU SM Frequency Process Aftributes
report1.ng [curent 241 - nvkemel_Z6solverPdidi F1L48.6 = | |7+ (19998,1,1)x(128,1,1) 3366ms 61.599.920 0-NVIDIA GeForce RTX 4060 1,83 Ghz [6727]heat %
report2.ng =
) et s Detalls Souirc Contert it R 5 i
& il ummary etails Source Zontex omments aw ession &3 compare | STools | @View | B+ Export !
3 @ This table shows all results in the report. Use the column headers to sort the results in this report. Double-click a result to see detailed metrics. Double-click on demangled names to rename it
D~ Estimated Speedup [%] Function Name Demangled Name _ Duration [ms] Runtime Improvement [ms] Compute Throughput [%] Memory Throughput %] # Registé
0 80.47 nvkemel_Z6solver.. nvkernel _Z6solver... 33,66 .09 8165
‘)
The following performance optimization opportunities were discovered for this result. Follow the rule links to see more context on the Details page.
Note: Speedup estimates provide upper bounds for the aptimization potential of a kerel assuming its overall algorithmic structure is kept unchanged.
FP64/32 Utilization The ratio of peak float (FP32) to double (FP64) performance on this device is 64:1, The workload achieved 0% of this device's FP32 peak performance and 34% of its FP64 peak performance.
Est. Speedup: 80.47% If o Compute Workload Analysis determines that this workload is FP64 bound, consider using 32-bit precision floting point operations to Improve its performance. See the & Profiling Guide
for more details on roofline analysis.
» Most frequently executed FPG4 Instructions.
¥ Key Performance Indicators
Uncoalesced Global Accesses This kemel has uncoalesced global accesses resulting in a total of 62433756 excessive sectors (9% of the total 662753729 sectors). Check the L2 Theoretical Sectors Global
Est. Speedup: 9.41% Excessive table for the primary source locations. The & CUDA Programming Guide has additional information on reducing uncoalesced device memory accesses.
» Key Performance Indicators
1 D

Egtlﬁggsvsv)l/g?;%lg U verteilte Systeme Parallel Processing - Tutorials (1) 33

3.2 NVidia Nsight Compute ...

Kernel Profiling ...

File Connection Debug Profile Tools Window Help

] Start Activity X 2 Bl 4+ 4 Baselines ¥ < > » Metric Details Launch Details

[@ Expanded sections might not show all budy contents by defautt Use the content selector n section header o selectather orallcontents. Default selection can be updated using SetDefault property in the section il

x]
| @ some metric columns are hidden by default, Right-click any column header and use the column chooser o show them. %

X _report2nsysrep X (SRR
Default Pr Result Size Time Cycles GPU SMFrequency Process Attributes
reportl.ng [cument 241 - nwkemel_Z6solverPdid_F1L48_6 | = | |7 |~| (19998,1,1)x(128,1,1) 3386 ms 61.599.920 0-NVIDIA GeForce RTX 4060 1,83 Ghz [6727] heat @
reportz.ng =
g ::::;:i Summary Details Source Contest Comments Raw Session £ Compare | [¥eTools | (@ View .| B Export
e T e s s —
© High Throughput This workload is wtilizing greater than 80.0% of the available compute or memory performance of the device. To further improve performance, work willikely need to be shifted from the
most utilized ta another unit. Start by analyzing workioads in the p Compute Workload Analysis seetion.
|~ FP64/32Utlization The ratio of peak float (FP32) ta double (FP64) performance on this device is 64:1. The workload achieved 0% of this device's FP32 peak performance and 34% of its FP64 peak
Est. Speedup: 80.47% If > Compute Woorkload Analysis d that this workload is FP64 bound, cansider using 32-bit precision floating point operations to Improve its performance.
See the @ Profiling Guide for more details on roofline analysis.
= Most frequently executed FP64 instructions
Location Opcode Executed Instructions -
{@source:solver-jacobi.cpp:50:soiver-{jacobi.cpp, line 51@ DADD 374963E407
(@source:solverjacobi.cpp:52:solverjacobi.cpp, line 53@ DADD 1.24988E+07
@source:solverjacobi.cpp:50:solver-acobi.cpp, line 51@ DMUL 1,24988E+07
» Key Performance Indicators
» Compute Workload Analysis =
Detailed analysis of the compi of the streaming (SM), including the achieved per clock (IPC) and the wtilization of each available pipeline. Pipelines with very high
utilization might limit the overall performance.
Executed Ipc Elapsed finst/cycle] 0,64 | SM Busy [] 81,74
Executed Ipe Active [inst/cycle] 0,64 | Issue Slots Busy [%] 20,57
Issued Ipc Active finst/cycle] 0,82
| VeryHigh Utilization FP64 isthe highest-utilized pipeline (81.7%) based en active cycles, taking into account the rates of its different instructions. It executes 64-bit floating point operations. The pipeline
is over-utiized and likely a performance bottleneck. Based on the number of executed instructions, the highest utilized pipeline (81.7%) is FP64 (FP64). It executes non-DMMA 64-bit
floating point operations. Comparing the two, the overall pipeline utilization appears to be caused by frequent, low-latency instructions. See the & Profiling Guide or hover over the
pipeline name to understand the workloads handled by each pipeline. The 2 Instruction Statistics section shows the mix of executed instructions for this workload.
» Key Performance Indicators
» Memory Workload Analysis &)
Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kemel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available
communication bandwidih between those units (Max Bandwidth), of by reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy) Detailed chart of the memory units.
, - Memary Throughput [Gbyte/s] 211,15 | Mem Busy [%] 4458] |
& a

Rol Wismdll . .
3 Bgtzraiggssﬁ[[g%gr/ verteilte Systeme Parallel Processing - Tutorials (1) 34

Notes for slide 34:

Once the measurement has finished, the tool shows a detailed analysis of the profiled
kernel. The 'Summary’ tab shows the most important performance issues, while the
'Details’ tab provides detailed metrics for, e.g., computational throughput, memory
usage, and occupancy (number of warps per SM).

34-1

3.2 NVidia Nsight Compute ... n

More Information
= NVIDIA Nsight Compute home page
= NVIDIA Nsight Compute documentation

..:i' Eg’!ﬁggsvsv)llg[[g%lg " verteilte Systeme Parallel Processing - Tutorials (1) 35

https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/index.html

Parallel Processing - Tutorials

4 Working with MPI

===" Roland Wismdiller . -
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 36

4 Working with MPI ... d

Available MPI implementations
= E.g., MPICH, OpenMPI
= portable implementations of the MPI-2 standard

w To use MPICH in the lab H-A 4111

w module load pv

Compiling MPI programs: mpic++
= mpic++ —-o myProg myProg.cpp

= Not a separate compiler for MPI, but just a script that defines
additional compiler options:
= include und linker paths, MPI libraries, ...

w option -show shows the invocations of the compiler

=== Roland Wismdl - -
i3 Bgtﬁggssg[[g%\g " verteilte Systeme Parallel Processing - Tutorials (1) 37

4 Working with MPI ... d

Running MPI programs

w Standardized start command:
= mpiexec -n 3 myProg args
w starts myProg args with 3 processes
= myProg must be on the command search path or must be
specified with (absolute or relative) path name
= On which nodes do the processes start?
= depends on the implementation and the platform
= in MPICH: specification is possible via a configuration file:

= mpiexec -n 3 -machinefile machines myProg args

= configuration file contains a list of node names, e.g.:

bslab01 <+ start one process on bs1ab03
bslab05:2 < start two processes on bslab05

===" Roland Wismdiller . -
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 38

4 Working with MPI ... d

Running MPI programs ...

= EXxecuting on specific cores:

= mpiexec -n 3 ... taskset -c 0-7 myProg args

= Remarks on mpiexec:

= on the remote nodes, the MPI programs start in the same
directory, in which mpiexec was invoked

= mpiexec USES ssh to start an auxiliary process on each node
that is listed in the configuration fiile

= even when less MPI processes should be started
= avoid an entry localhost in the configuration file
= it results in problems with ssh

..:i' Eg’!ﬁggsvsv)llg[[g%lg " verteilte Systeme Parallel Processing - Tutorials (1) 39

4 Working with MPI ... d

Debugging
= MPICH and OpenMPI support gdb and totalview
w Using gdb:
= mpiexec -enable-x -n ... xterm -e gdb myProg

= nstead of xterm, you may (have to) use other console
programs, e.d., konsole Or gnome-terminal

= for each process, a gdb starts in its own console window
= in gdb, start the process with run args. ..

w Prerequisite: compilation with debugging information
= mpic++ -g —-o myProg myProg.cpp

===" Roland Wismdiller . -
+#.7% Betriebssysteme / verteilte Systeme Parallel Processing - Tutorials (1) 40

4 Working with MPI ... d

Performance Analysis using Scalasca
= |n principle, in the same way as for OpenMP
= Compiling the program:
= scalasca -instrument mpic++ -0 myprog myprog.cpp
= Running the programms:
w scalasca -analyze mpiexec -n 4/myprog

= creates a directory scorep myprog_4_sum

= 4 indicates the number of processes
= directory must not previously exist; delete it, if necessary

= |nteractive analysis of the recorded data:

= scalasca -examine scorep_myprog-4_sum

=="" Rol Wismuill : ;
i3 Bgtﬁggssg[[g%g r/ verteilte Systeme Parallel Processing - Tutorials (1) 41

	1 Computing Environment (H-A 4111)
	2 Tools for OpenMP
	2.1 Compiling
	2.2 Executing
	2.3 Debugging
	2.4 Performance Analysis

	3 GPU Programming with OpenMP
	3.1 Compilation
	3.2 NVidia Nsight Compute

	4 Working with MPI

