
Prof. Dr. rer. nat. Roland Wismüller

Excercise Sheet 3

Solution

Lecture Parallel Processing

Winter Term 2024/25

Exercise 1: Dependence analysis (04e)

a) Correct: S1 writes a[7] in iteration 7, S2 reads a[7] in all following iterations.

b) Correct: S1 reads b[i], S2 writes b[i].

c) Incorrect: as in each iteration, S2 is executed after S1, there can never be a dependence within a single loop iteration

from S2 to S1.

d) Correct: e.g. S2 writes b[4] in iteration 4, S1 reads b[4] in iteration 5.

e) Correct: S1 writes a[7] in iteration 7, S2 reads a[7] in all previous iterations.

f) Incorrect: S1 writes only a, which is not read by S3. S3 writes only c which is not read by S1.

g) Correct: e.g. S2 reads c[3] in iteration 3, S3 writes to c[3] in iteration 4.

h) Incorrect: S2 and S3 write to different arrays.

i) Incorrect: S3 writes to c[i-1] and S2 reads from c[i]. Thus, it we e.g. look at c[5], it is written in iteration 6,

but is read in iteration 5, i.e., earlier. Thus, this is an anti-dependence.

j) Correct: each statement writes to a different array.

Exercise 2: Loop parallelization (05e)

Here are the correct parallelizations:

void loop1()

{

#pragma omp parallel for

for (int i=0; i<N; i++) {

a[i] = b[i] + c[0];

b[i] = a[i] - c[i];

}

}

void loop2()

{

// True dependence: a[i] (write, i=1) −−> a[i−1] (read, i=2)

for (int i=1; i<N; i++) {

a[i] = a[i-1];

b[i] = a[i] + c[i];

}

}

void loop3()

{

// Anti dependence: a[i+2] (read, i=1) −−> a[i] (write, i=3)

// So use renaming. Here, the variable ’a’ is renamed as ’aa’ when we store into

// it. Later, we copy ’aa’ into ’a’ again.

double aa[N];

#pragma omp parallel

{

1



#pragma omp for

for (int i=1; i<N-2; i++) {

aa[i] = b[i] + a[i+2];

c[i] = b[i-1];

}

#pragma omp for

for (int i=1; i<N-2; i++)

a[i] = aa[i];

}

}

void loop4()

{

// True dependence (among others): a[i] (write, i=N/2) −−> a[N/2] (read, i=N/2+1)

for (int i=0; i<N; i++) {

a[i] = a[i] - 0.9 * a[N/2];

}

}

void loop5()

{

// True dependence: a[i+N/3] (write, i=0) −−> a[i] (read, i=N/3)

for (int i=0; i<N/2; i++) {

a[i+N/3] = (c[i] - a[i])/2;

}

}

void loop6()

{

// No dependence, since i >= N/3 is not possible!

#pragma omp parallel for

for (int i=0; i<N/3; i++) {

a[i+N/3] = (c[i] - a[i])/2;

}

}

void loop7()

{

// Dependeces cannot be analyzed at compile time.

// Whether or not we have dependences depends on the contents of map[].

for (int i=0; i<N; i++) {

a[map[i]] = a[i] + b[i];

}

}

void loop8()

{

// The outer loop cannot be parallelized, since it carries dependences.

// In the inner loop, however, there are no dependences (for a fixed i)!

for (int i=1; i<M-1; i++) {

#pragma omp parallel for

for (int j=1; j<M-1; j++) {

m[i][j] = (m[i-1][j-1] + m[i-1][j+1] + m[i+1][j-1] + m[i+1][j+1]) / 4;

}

}

}

2



Exercise 3: Parallelization of a simple optimization code with OpenMP (Compulsory Exercise!

Submit until Tuesday, November 26th, 10:00 via moodle ) (06e)

Exercise 4: Parallelization of a numerical integration using OpenMP (Compulsory Exercise!

Submit until Tuesday, November 26th, 10:00 via moodle ) (07e)

3

https://moodle.uni-siegen.de/mod/assign/view.php?id=1300872
https://moodle.uni-siegen.de/mod/assign/view.php?id=1300872

