Important OpenMP Directives and Functions
Wichtige OpenMP-Direktiven und Funktionen

e #ipragma omp parallel [clause]
statement_or_block

Create multiple threads for a parallel region.
Important clauses:

— private(variable_list)

— firstprivate (variable_list)

— shared(variable_1list)

e fipragma omp for [clause]
for_loop

Distribute the iterations of following loop among threads.
Important clauses:

— private(variable_list)

— firstprivate (variable_list)

— lastprivate (variable_list)

— reduction (operator : variable_list)

— ordered

— schedule (kind, chunk-size)

- nowait

e #pragma omp sections [clause]
{

#pragma omp section
statement_or_block

#pragma omp section
statement_or_block

}
Distribute the marked code sections among threads.

Important clauses:

— private(variable_list)

firstprivate (variable_list)
— lastprivate (variable_list)

— nowait

e fpragma omp task [clause]
statement_or_block

Create an asynchronously executed task.
Important clauses:
- private (variable_list)

— firstprivate(variable_list)

— shared (variable_list)



— depend(direction : variable_list)

— if (expression)

#pragma omp barrier
Barrier synchronization.

#fpragma omp single [clause]
statement_or_block

Only a single thread executes the following statement/block.

#pragma omp master
statement_or_block

Only the master thread executes the following statement/block.

#pragma omp critical [name]
statement_or_block

The following statement/block is executed under mutual exclusion.

#pragma omp atomic [clause]
statement_or_block

The memory update in the following statement/block is executed atomically.
Important clauses:

- read
- write
— update
— capture

— seqg_cst

#pragma omp ordered
statement_or_block

The following statement/block will be executed in order required by the sequential loop.
#pragma omp taskwait
Wait for completion of all direct subtasks of the current task.

#pragma omp taskgroup
block

Wait for completion of all subtasks creted in the block.

int omp_get_num_ threads ()
Return the current number of threads.
int omp_get_thread num()

Return the thread number of the calling thread (range: O ... omp_get_num_threads () -1).



