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A sorting library in Java

➥ You just found the “best list sorting class ever ” in the WWW

➥ Interface of the class:

class Sorter {
...

public void sort(List<? extends Comparable> list) {
...

}
}

➥ Your code:

List<Contact> contacts = ...;

Sorter sorter = new Sorter();

sorter.sort(contacts);

➥ Your belief: sort() only uses Contact.compareTo() ???
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A sorting library in Java

➥ You just found the “best list sorting class ever ” in the WWW

➥

Socket sock = new Socket(...);
PrintStream stream = new PrintStream(...);
Contact c = (Contact)list.get(i);
stream.println(c.getEMail());

Interface of the class:

class Sorter {
...

public void sort(List<? extends Comparable> list) {
...

}
}

➥ Your code:

List<Contact> contacts = ...;

Sorter sorter = new Sorter();

sorter.sort(contacts);

➥ Your belief: sort() only uses Contact.compareTo() ???
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Principle of least authority (POLA)

A software component should receive just the authority

required to fulfill its intended purpose [1]

➥ Difference between authority and permission [2][3]

➥ authority also includes indirect effects

➥ e.g., component may make another component perform an
action, which is not directly permitted

➥ e.g., action may be permitted but not available

➥ Basis: access control mechanisms

➥ access matrix

➥ access control lists (ACLs), capabilities
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Classical implementation of access control

➥ Textbook figure:

➥ subjects act upon objects

➥ accesses are mediated via access matrix
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Classical implementation of access control

➥ More realistic:

➥ subjects are objects that may actively perform operations

➥ subjects have direct access only to a privileged component
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Classical implementation of access control

➥ Example: Linux

➥ subjects = processes, isolated via hardware

➥ all accesses mediated by the kernel

Isolation
r

rr

r,w r

r,w

... On

S1

...

Sn

Access matrix

...

...
...

On

S1

Sn

Privileged component

Sn O1

r

O1

S1

S1

Sn

O1
rProcess

KernelLogical address space (MMU)
Privileged instructions

Device

File

P
rocesses



2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 5

Classical implementation of access control

➥ Example: Android

➥ subjects = apps, objects = subsystems

➥ accesses mediated by kernel and runtime
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Classical implementation of access control

➥ Example: Java security manager

➥ subjects = Java objects, not fully isolated

➥ Java runtine mediates method calls on ‘critical‘ objects
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Access control using capabilities

➥ Capability: unforgeable information given to a subject, enabling it

to perform operations on an object

➥ inseparably combines designation with authority [4]

➥ Comparison:

printerBob r
r,w r,w

rprinter Bob

/etc/pwdr
w/etc/pwdAlice r

w Alice

ACL Capability
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Access control using capabilities

➥ Capability: unforgeable information given to a subject, enabling it

to perform operations on an object

➥ inseparably combines designation with authority [4]

➥ Results in decentralized access control
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Dynamics of access permissions

➥ How can the acess matrix be modified at runtime?

➥ changing the access matrix must require proper authority!

➥ ACLs

➥ typically: objects have a unique owner

➥ owner is allowed to change ACL arbitrarily

➥ Capabilities

➥ capabilities may be passed between subjects

➥ but not arbitrarily: passing a capability requires a capability! [4]

➥ capabilities may be weakened (attenuated), but not amplified

➥ capabilities also support revocation [4]

➥ by using the caretaker pattern [5]
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Dynamics of access permissions

➥ How can the acess matrix be modified at runtime?

➥ changing the access matrix must require proper authority!

➥ ACLs

➥ typically: objects have a unique owner
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Discussion

➥ Classical implementation

➥ granularity of subjects is often restricted

➥ permissions must be checked for each access

➥ centralized mediator can be a bottleneck

➥ privileged component can lead to security problems

➥ restricted dynamics (e.g., no delegation)

➥ Capabilities

➥ allow fine grained subjects

➥ allow delegation of authority

➥ access restrictions can be enforced by construction

➥ i.e., no (or less) checks at runtime
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➥ Basis: pure object oriented programming

➥ everything is an object (even the subjects)

➥ access to attributes only via method calls

➥ An object reference is a capability to access the object

➥ note: no distinction is made between different operations

➥ i.e. the capability allows to call all available methods

➥ How can an object A receive a capability to B? [6]

➥ if A creates B, A has a reference (capability) to B

➥ A can receive the reference to B from another object C

➥ as an argument of A’s constructor

➥ as an argument of a method call (when C calls A)

➥ as a result of a method call (when A calls C)
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Attenuation of authority

➥ How can we minimize the authority granted by a reference?

➥ Answer: membrane pattern [3][5]

➥ wrap the object into a membrane that provides less methods
and/or restricted methods (that may return membranes)

➥ i.e., membrane acts as fine-grained capability

➥ In the Sorter example:

get()

get()

compareTo()
getEMail()

swap()

swap()
remove()

s:Sorter ml:MList l:List

c:Contact
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Attenuation of authority

➥ How can we minimize the authority granted by a reference?

➥ Answer: membrane pattern [3][5]

➥ wrap the object into a membrane that provides less methods
and/or restricted methods (that may return membranes)

➥ i.e., membrane acts as fine-grained capability

➥ In the Sorter example:

get(0)

}
return new MCmp(list.get(i));

MCmp get(int i) {

get()

get()

compareTo()
getEMail()

swap()

swap()
remove()

s:Sorter ml:MList l:List

c:Contact
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Attenuation of authority

➥ How can we minimize the authority granted by a reference?

➥ Answer: membrane pattern [3][5]

➥ wrap the object into a membrane that provides less methods
and/or restricted methods (that may return membranes)

➥ i.e., membrane acts as fine-grained capability

➥ In the Sorter example:

get()

get()

compareTo()
getEMail()

swap()

swap()
remove()

s:Sorter ml:MList l:List

c:Contact

compareTo()

mc:MCmp
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Secure programming languages [3][7]

➥ Based on the object capability paradigm and security patterns

➥ Foundations of security: [8]

➥ memory safety: references cannot be forged

➥ object encapsulation: no data access without reference

➥ implies: no static methods / attributes

➥ Remaining shortcomings:

➥ system can be attacked ‘from below’ [9]

⇒ must only permit code written in the secure language

⇒ use a secure intermediate language (byte code)

➥ how can we know the minimal required access rights?

➥ run time overhead induced by (cascaded) membranes
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➥ Most programming languges are typed

➥ A reference type specifies requirements on the referenced object

➥ e.g. Comparable requires that the object provides a method
compareTo()

➥ A reference type also restricts the use of the referenced object

➥ Comparable itself does not allow to invoke getEMail()

➥ Thus, types can be used to specify required / granted rights

➥ Idea: split capability into two parts

➥ reference controls whether object can be accessed or not

➥ type of reference variable controls the permitted methods

➥ Additional security requirements:

➥ a method can be called only if both type and object permit it

➥ type casts must not allow to amplify authority
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➥ Type: a specification of properties of data objects

➥ or: a collection of objects with specified properties

➥ Type system: set of rules assigning a type to language
constructs, such as variables, expressions, objects, ...

➥ Type checking: verifying and enforcing the constraints of types

➥ For ease of presentation: we just consider interface types

➥ An interface type defines all available / usable methods,
together with their argument and result types

➥ for simplicity: we just consider one argument and one result

➥ Important relation: subtype relation

➥ S is subtype of T , if each object of type S also has type T

➥ usually written as S <: T , here: T ≤ S
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Formal representation of types

➥ Type: T = MSA
∗

➥ a type defines a state for each method

➥ i.e., it maps a string to the corresponding method state

➥ A
∗ = the set of all strings

➥ Method state: MS = A × (M ∪ {⊥})

➥ a method state consists of an assertion (permission) and an

optional method signature

➥ Assertions: A = {denied, avail }

➥ denied: type does not allow to call this method

➥ available: type provides the method with the given signature

➥ Method signature: M = T × T
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Subtype relation

➥ S is subtype of T ⇒ object of type S can be used where an
object of type T is required

➥ i.e., o : S can be assigned to v : T (without any further action)

➥ Structural typing: for T ≤ S, S must provide a compatible method
for each method provided by T

➥ Thus, we define:

denied < avail

T, S ∈ T
∀a ∈ A

∗ : T (a) ≤ S(a)

T ≤ S

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

πt ≤ πs

σt 6= ⊥ ∧ σs 6= ⊥ ⇒ σt ≤ σs

t ≤ s

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

As ≤ At

Rt ≤ Rs

t ≤ s



Types ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 16

Covariance and contravariance

➥ Example:

➥ interface T { Rt meth(At); }

➥ interface S { Rs meth(As); } with T ≤ S

➥ Situation when calling meth:

...

}

meth( a) {

res = ref.meth(arg);

arg = ...;

ref 

A

R

T S

R A

t

t

s s

➥ passing the argument requires As ≤ At

➥ passing the result requires Rt ≤ Rs
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Security property

➥ If o : T0 is assigned to v : Tn via a sequence of casts to types

T1, ..., Tn, v allows to call a method m only if all Ti allow that

➥ I.e., no amplification of authority

➥ Property holds recursively:

class T0 {

R0 m() {

return new R0();

}

}

class R0 {

void m1() { ... }

void m2() { ... }

}

interface T1 {

R1 m();

}

interface R1 {

void m1();

}

T0 v0 = new T0();

T1 v1 = v0;

v1.m().m1(); // OK

v1.m().m2(); // Err

T0 v2 = v1; // Err
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Optional methods

➥ Type system is still too restrictive (no downcast at all)

➥ We want to allow a limited downcast

➥ i.e. only if the source type permits it

➥ Additional assertion: optional ∈ A

➥ optional means that the method may or may not be available

➥ calling the method is permitted,

➥ but there is no guarantee that the method is available

➥ order: denied < optional < avail

➥ We need a new “legal cast” relation: ≺

➥ T ≺ S ⇔ the static type check will allow a cast from S to T

(although it may fail at runtime)



Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 19

Legal cast relation

➥ We allow a (down)cast from S to T , even if some method m is

➥ available in T and optional in S, or

➥ optional in T and denied in S

T, S ∈ T
∀m ∈ A

∗ : T (m) ≺ S(m)

T ≺ S

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

¬(πt = avail ∧ πs = denied)
σt 6= ⊥ ∧ σs 6= ⊥ ⇒ σt ≺ σs

t ≺ s

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

As ≺ At

Rt ≺ Rs

t ≺ s
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Runtime actions

➥ If we have T ≺ S, but T 6≤ S, we need to perform some actions

at runtime

➥ ∃m : m is available in T and optional in S:

➥ we need a type check to ensure that m is actually available

➥ ∃m : m is optional in T and denied in S:

➥ we need a membrane to ensure that m cannot be called via T

➥ let M be the type of this membrane

➥ requirement: T ≤ M , M doesn’t grant more authority than S

➥ problem: all x ∈ A with optional ≤ x permit calling m

➥ solution: new element unavailable with optional < unavail

➥ asserts that the object does not provide the method
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Creating membranes

➥ We first extend the ≺ relation properly:

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

¬(πt = avail ∧ (πs = denied ∨ πs = unavail))
σt 6= ⊥ ∧ σs 6= ⊥ ⇒ σt ≺ σs

t ≺ s

➥ Next, we need a rule to determine the membrane type

➥ let T ∩r

r
S be the smallest subtype of T that does not grant

more rights than S

➥ for contravariance: T ∩r

r
S is the largest supertype of S that

does not grant more rights than T
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Restricting method permissions

➥ Partial order: denied < optional <
avail

unavail

➥ t ∩r

r
s: t \ s denied optional avail unavail

denied denied denied denied denied

optional unavail optional optional unavail

avail - - - avail avail - - -

unavail unavail unavail unavail unavail

➥ t ∩r

r
s: t \ s denied optional avail unavail

denied denied denied denied unavail

optional denied optional avail unavail

avail denied optional avail unavail

unavail denied denied denied unavail
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Restricted subtype

T, S ∈ T

T ∩r

r
S = λm.(T (m) ∩r

r
S(m))

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

t ∩r

r
s = (πt ∩

r

r
πs, σt ∩

r

r
σs)

s ∈ M ∪ {⊥}

⊥ ∩r

r
s = ⊥

t ∈ M ∪ {⊥}

t ∩r

r
⊥ = ⊥

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

t ∩r

r
s = (As ∩r

r
At, Rt ∩

r

r
Rs)
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Restricted supertype

T, S ∈ T

T ∩r

r
S = λm.(T (m) ∩r

r
S(m))

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

t ∩r

r
s = (πt ∩

r

r
πs, σt ∩

r

r
σs)

s ∈ M ∪ {⊥}

⊥ ∩r

r
s = ⊥

t ∈ M ∪ {⊥}

t ∩r

r
⊥ = ⊥

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

t ∩r

r
s = (As ∩r

r
At, Rt ∩

r

r
Rs)
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Runtime cast actions

➥ Situation:

v
V

r1
ST

r2 

➥ T 6≺ S: static type error!

➥ is already determined when loading a component

➥ T ≤ S: assign reference as is

➥ access restrictions of S are also enforced by T

➥ Otherwise: create a membrane with type T ∩r

r
S

➥ access restrictions of S are enforced by membrane and T



Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 25

Runtime cast actions

➥ Situation:

v
V

r1
ST

r2 

➥ T 6≺ S: static type error!

➥ is already determined when loading a component

➥ T ≤ S: assign reference as is

➥ access restrictions of S are also enforced by T

➥ Otherwise: create a membrane with type T ∩r

r
S

➥ access restrictions of S are enforced by membrane and T



Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 25

Runtime cast actions

➥ Situation:

v
V

r1
ST

r2 

➥ T 6≺ S: static type error!

➥ is already determined when loading a component

➥ T ≤ S: assign reference as is

➥ access restrictions of S are also enforced by T

➥ Otherwise: create a membrane with type T ∩r

r
S

➥ access restrictions of S are enforced by membrane and T



Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 25

Runtime cast actions

➥ Situation:

m
rT S

v
V

r1
ST

r2 

➥ T 6≺ S: static type error!

➥ is already determined when loading a component
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r
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Cascading membranes

➥ What happens if the assigned object already is a membrane?

➥ Situation:

v
V

r1
ST

r2 
M
m

➥ Cascading membranes can lead to severe inefficiency

➥ method calls are forwarded multiple times

➥ Solution: new membrane includes restrictions of M

➥ can forward calls directly to the real object



Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 26

Cascading membranes

➥ What happens if the assigned object already is a membrane?

➥ Situation:

rT S

m’

v
V

r1
ST

r2 
M
m

➥ Cascading membranes can lead to severe inefficiency

➥ method calls are forwarded multiple times

➥ Solution: new membrane includes restrictions of M

➥ can forward calls directly to the real object



Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 26

Cascading membranes

➥ What happens if the assigned object already is a membrane?

➥ Situation:

r r

m’

ST( ) M

v
V

r1
ST

r2 
M
m

➥ Cascading membranes can lead to severe inefficiency

➥ method calls are forwarded multiple times

➥ Solution: new membrane includes restrictions of M

➥ can forward calls directly to the real object



4.3 Extensions

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 27

➥ Remove security restrictions inside a single component

➥ introduce security contexts and a generic permission “local”

➥ a reference that assures that the object is in the local context
can be downcasted without limitation

➥ Add classes to the type system

➥ direct access to attributes is allowed via a local reference

➥ Add array types

➥ array modeled as class with read() and write() method

➥ Allow unsafe casts, i.e. unsafe covariant types

➥ i.e. if S is subtype of T , allow S[] being used as T []

➥ problem: T [] has write(T e), while S[] has write(S e)

➥ S[] is not a subtype of T [], since S is not a supertype of T

➥ may result in a runtime type error when write() is called
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➥ Additional generic permissions, e.g. “transferable”

➥ (only) a transferable reference can be passed to a different

context

➥ allows implementation of confined types [12]

➥ e.g., objects of a class declared as non-transferrable can

never be accessed from another context

➥ Unifying structural and nominal typing [13][14]

➥ advantage of structural typing: no need to explicitly declare

subtype relationship (“implements”)

➥ problem of structural typing: cannot express semantic

restrictions

➥ solution: type system allows to specify a semantic category for

each method
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➥ Software systems should obey the POLA

➥ Capabilities combine designation with authority

➥ Object capability systems use references as capabilities

➥ fine grained access control requires the use of membranes

➥ Types can serve as a specification of fine grained access rights

➥ type system must not allow amplification of rights

➥ (restricted) downcast is possible by introducing membranes

➥ often, access rights need not be checked at runtime

➥ Future work:

➥ extension of type system (e.g., revocation)

➥ full implementation of a virtual machine using the type system

➥ including modular operating system
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