
Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components i

Roland Wismüller

Universität Siegen

rolanda.dwismuellera@duni-siegena.dde

Tel.: 0271/740-4050, Büro: H-B 8404

Stand: October 26, 2022

Secure Cooperation
of Untrusted Components

Cutting Edge Research

Winter term 2022/23

Secure Cooperation of Untrusted Components

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 2

Outline

➥ Motivation

➥ Access Control

➥ The Object Capability Paradigm

➥ A Capability Type System

➥ Conclusion and Future Work

1 Motivation

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 3

A sorting library in Java

➥ You just found the “best list sorting class ever ” in the WWW

➥ Interface of the class:

class Sorter {
...

public void sort(List<? extends Comparable> list) {
...

}
}

➥ Your code:

List<Contact> contacts = ...;

Sorter sorter = new Sorter();

sorter.sort(contacts);

➥ Your belief: sort() only uses Contact.compareTo() ???

1 Motivation

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 3

A sorting library in Java

➥ You just found the “best list sorting class ever ” in the WWW

➥

Socket sock = new Socket(...);
PrintStream stream = new PrintStream(...);
Contact c = (Contact)list.get(i);
stream.println(c.getEMail());

Interface of the class:

class Sorter {
...

public void sort(List<? extends Comparable> list) {
...

}
}

➥ Your code:

List<Contact> contacts = ...;

Sorter sorter = new Sorter();

sorter.sort(contacts);

➥ Your belief: sort() only uses Contact.compareTo() ???

2 Access Control

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 4

Principle of least authority (POLA)

A software component should receive just the authority

required to fulfill its intended purpose [1]

➥ Difference between authority and permission [2][3]

➥ authority also includes indirect effects

➥ e.g., component may make another component perform an
action, which is not directly permitted

➥ e.g., action may be permitted but not available

➥ Basis: access control mechanisms

➥ access matrix

➥ access control lists (ACLs), capabilities

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 5

Classical implementation of access control

➥ Textbook figure:

➥ subjects act upon objects

➥ accesses are mediated via access matrix

r

rr

r,w r

r,w

... On

S1

...

Sn

Access matrix

...

...
...

On

S1

Sn

Privileged component

OjO1 Oi

O1

Oi

Oj

Access
request
(object,

operation)
Access

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 5

Classical implementation of access control

➥ More realistic:

➥ subjects are objects that may actively perform operations

➥ subjects have direct access only to a privileged component

Isolation
r

rr

r,w r

r,w

... On

S1

...

Sn

Access matrix

...

...
...

On

S1

Sn

Privileged component

Sn O1

r

O1

S1

S1

Sn

O1
r

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 5

Classical implementation of access control

➥ Example: Linux

➥ subjects = processes, isolated via hardware

➥ all accesses mediated by the kernel

Isolation
r

rr

r,w r

r,w

... On

S1

...

Sn

Access matrix

...

...
...

On

S1

Sn

Privileged component

Sn O1

r

O1

S1

S1

Sn

O1
rProcess

KernelLogical address space (MMU)
Privileged instructions

Device

File

P
rocesses

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 5

Classical implementation of access control

➥ Example: Android

➥ subjects = apps, objects = subsystems

➥ accesses mediated by kernel and runtime

Isolation
r

rr

r,w r

r,w

... On

S1

...

Sn

Access matrix

...

...
...

On

S1

Sn

Privileged component

Sn O1

r

O1

S1

S1

Sn

O1
r

Logical address space
Privileged instructions
ART compiler Android runtime

Linux kernel

App

Ext.
storage

A
pps

SMS

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 5

Classical implementation of access control

➥ Example: Java security manager

➥ subjects = Java objects, not fully isolated

➥ Java runtine mediates method calls on ‘critical‘ objects

... On

S1

...

Sn

Access matrix

...

...
...

On

S1

Sn

Privileged component

OjO1 Oi

O1

Oi

Oj

foo()

foo

bar baz

Oj

foo()
object
Java

Virtual machine
Java byte code

File

Java runtime

Socket

Class
loader

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 6

Access control using capabilities

➥ Capability: unforgeable information given to a subject, enabling it

to perform operations on an object

➥ inseparably combines designation with authority [4]

➥ Comparison:

printerBob r
r,w r,w

rprinter Bob

/etc/pwdr
w/etc/pwdAlice r

w Alice

ACL Capability

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 6

Access control using capabilities

➥ Capability: unforgeable information given to a subject, enabling it

to perform operations on an object

➥ inseparably combines designation with authority [4]

➥ Results in decentralized access control

S1
w

r

r

S2

OnSn w

r

O1

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 7

Dynamics of access permissions

➥ How can the acess matrix be modified at runtime?

➥ changing the access matrix must require proper authority!

➥ ACLs

➥ typically: objects have a unique owner

➥ owner is allowed to change ACL arbitrarily

➥ Capabilities

➥ capabilities may be passed between subjects

➥ but not arbitrarily: passing a capability requires a capability! [4]

➥ capabilities may be weakened (attenuated), but not amplified

➥ capabilities also support revocation [4]

➥ by using the caretaker pattern [5]

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 7

Dynamics of access permissions

➥ How can the acess matrix be modified at runtime?

➥ changing the access matrix must require proper authority!

➥ ACLs

➥ typically: objects have a unique owner

➥ owner is allowed to change ACL arbitrarily

➥

BobAlice

Carol

xc

x

Capabilities

➥ capabilities may be passed between subjects

➥ but not arbitrarily: passing a capability requires a capability! [4]

➥ capabilities may be weakened (attenuated), but not amplified

➥ capabilities also support revocation [4]

➥ by using the caretaker pattern [5]

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 7

Dynamics of access permissions

➥ How can the acess matrix be modified at runtime?

➥ changing the access matrix must require proper authority!

➥ ACLs

➥ typically: objects have a unique owner

➥ owner is allowed to change ACL arbitrarily

➥

R
x

r

BobAlice

Carol

xc

x

Capabilities

➥ capabilities may be passed between subjects

➥ but not arbitrarily: passing a capability requires a capability! [4]

➥ capabilities may be weakened (attenuated), but not amplified

➥ capabilities also support revocation [4]

➥ by using the caretaker pattern [5]

2 Access Control ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 8

Discussion

➥ Classical implementation

➥ granularity of subjects is often restricted

➥ permissions must be checked for each access

➥ centralized mediator can be a bottleneck

➥ privileged component can lead to security problems

➥ restricted dynamics (e.g., no delegation)

➥ Capabilities

➥ allow fine grained subjects

➥ allow delegation of authority

➥ access restrictions can be enforced by construction

➥ i.e., no (or less) checks at runtime

3 The Object Capability Paradigm [5][6]

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 9

➥ Basis: pure object oriented programming

➥ everything is an object (even the subjects)

➥ access to attributes only via method calls

➥ An object reference is a capability to access the object

➥ note: no distinction is made between different operations

➥ i.e. the capability allows to call all available methods

➥ How can an object A receive a capability to B? [6]

➥ if A creates B, A has a reference (capability) to B

➥ A can receive the reference to B from another object C

➥ as an argument of A’s constructor

➥ as an argument of a method call (when C calls A)

➥ as a result of a method call (when A calls C)

The Object Capability Paradigm ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 10

Attenuation of authority

➥ How can we minimize the authority granted by a reference?

➥ Answer: membrane pattern [3][5]

➥ wrap the object into a membrane that provides less methods
and/or restricted methods (that may return membranes)

➥ i.e., membrane acts as fine-grained capability

➥ In the Sorter example:

get()

get()

compareTo()
getEMail()

swap()

swap()
remove()

s:Sorter ml:MList l:List

c:Contact

The Object Capability Paradigm ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 10

Attenuation of authority

➥ How can we minimize the authority granted by a reference?

➥ Answer: membrane pattern [3][5]

➥ wrap the object into a membrane that provides less methods
and/or restricted methods (that may return membranes)

➥ i.e., membrane acts as fine-grained capability

➥ In the Sorter example:

get(0)

}
return new MCmp(list.get(i));

MCmp get(int i) {

get()

get()

compareTo()
getEMail()

swap()

swap()
remove()

s:Sorter ml:MList l:List

c:Contact

The Object Capability Paradigm ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 10

Attenuation of authority

➥ How can we minimize the authority granted by a reference?

➥ Answer: membrane pattern [3][5]

➥ wrap the object into a membrane that provides less methods
and/or restricted methods (that may return membranes)

➥ i.e., membrane acts as fine-grained capability

➥ In the Sorter example:

get()

get()

compareTo()
getEMail()

swap()

swap()
remove()

s:Sorter ml:MList l:List

c:Contact

compareTo()

mc:MCmp

The Object Capability Paradigm ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 11

Secure programming languages [3][7]

➥ Based on the object capability paradigm and security patterns

➥ Foundations of security: [8]

➥ memory safety: references cannot be forged

➥ object encapsulation: no data access without reference

➥ implies: no static methods / attributes

➥ Remaining shortcomings:

➥ system can be attacked ‘from below’ [9]

⇒ must only permit code written in the secure language

⇒ use a secure intermediate language (byte code)

➥ how can we know the minimal required access rights?

➥ run time overhead induced by (cascaded) membranes

4 A Capability Type System

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 12

➥ Most programming languges are typed

➥ A reference type specifies requirements on the referenced object

➥ e.g. Comparable requires that the object provides a method
compareTo()

➥ A reference type also restricts the use of the referenced object

➥ Comparable itself does not allow to invoke getEMail()

➥ Thus, types can be used to specify required / granted rights

➥ Idea: split capability into two parts

➥ reference controls whether object can be accessed or not

➥ type of reference variable controls the permitted methods

➥ Additional security requirements:

➥ a method can be called only if both type and object permit it

➥ type casts must not allow to amplify authority

4.1 Types [10]

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 13

➥ Type: a specification of properties of data objects

➥ or: a collection of objects with specified properties

➥ Type system: set of rules assigning a type to language
constructs, such as variables, expressions, objects, ...

➥ Type checking: verifying and enforcing the constraints of types

➥ For ease of presentation: we just consider interface types

➥ An interface type defines all available / usable methods,
together with their argument and result types

➥ for simplicity: we just consider one argument and one result

➥ Important relation: subtype relation

➥ S is subtype of T , if each object of type S also has type T

➥ usually written as S <: T , here: T ≤ S

Types ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 14

Formal representation of types

➥ Type: T = MSA
∗

➥ a type defines a state for each method

➥ i.e., it maps a string to the corresponding method state

➥ A
∗ = the set of all strings

➥ Method state: MS = A × (M ∪ {⊥})

➥ a method state consists of an assertion (permission) and an

optional method signature

➥ Assertions: A = {denied, avail }

➥ denied: type does not allow to call this method

➥ available: type provides the method with the given signature

➥ Method signature: M = T × T

Types ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 15

Subtype relation

➥ S is subtype of T ⇒ object of type S can be used where an
object of type T is required

➥ i.e., o : S can be assigned to v : T (without any further action)

➥ Structural typing: for T ≤ S, S must provide a compatible method
for each method provided by T

➥ Thus, we define:

denied < avail

T, S ∈ T
∀a ∈ A

∗ : T (a) ≤ S(a)

T ≤ S

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

πt ≤ πs

σt 6= ⊥ ∧ σs 6= ⊥ ⇒ σt ≤ σs

t ≤ s

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

As ≤ At

Rt ≤ Rs

t ≤ s

Types ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 16

Covariance and contravariance

➥ Example:

➥ interface T { Rt meth(At); }

➥ interface S { Rs meth(As); } with T ≤ S

➥ Situation when calling meth:

...

}

meth(a) {

res = ref.meth(arg);

arg = ...;

ref

A

R

T S

R A

t

t

s s

➥ passing the argument requires As ≤ At

➥ passing the result requires Rt ≤ Rs

4.2 Types as Capabilities: The COSMA Type System [11]

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 17

Security property

➥ If o : T0 is assigned to v : Tn via a sequence of casts to types

T1, ..., Tn, v allows to call a method m only if all Ti allow that

➥ I.e., no amplification of authority

➥ Property holds recursively:

class T0 {

R0 m() {

return new R0();

}

}

class R0 {

void m1() { ... }

void m2() { ... }

}

interface T1 {

R1 m();

}

interface R1 {

void m1();

}

T0 v0 = new T0();

T1 v1 = v0;

v1.m().m1(); // OK

v1.m().m2(); // Err

T0 v2 = v1; // Err

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 18

Optional methods

➥ Type system is still too restrictive (no downcast at all)

➥ We want to allow a limited downcast

➥ i.e. only if the source type permits it

➥ Additional assertion: optional ∈ A

➥ optional means that the method may or may not be available

➥ calling the method is permitted,

➥ but there is no guarantee that the method is available

➥ order: denied < optional < avail

➥ We need a new “legal cast” relation: ≺

➥ T ≺ S ⇔ the static type check will allow a cast from S to T

(although it may fail at runtime)

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 19

Legal cast relation

➥ We allow a (down)cast from S to T , even if some method m is

➥ available in T and optional in S, or

➥ optional in T and denied in S

T, S ∈ T
∀m ∈ A

∗ : T (m) ≺ S(m)

T ≺ S

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

¬(πt = avail ∧ πs = denied)
σt 6= ⊥ ∧ σs 6= ⊥ ⇒ σt ≺ σs

t ≺ s

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

As ≺ At

Rt ≺ Rs

t ≺ s

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 20

Runtime actions

➥ If we have T ≺ S, but T 6≤ S, we need to perform some actions

at runtime

➥ ∃m : m is available in T and optional in S:

➥ we need a type check to ensure that m is actually available

➥ ∃m : m is optional in T and denied in S:

➥ we need a membrane to ensure that m cannot be called via T

➥ let M be the type of this membrane

➥ requirement: T ≤ M , M doesn’t grant more authority than S

➥ problem: all x ∈ A with optional ≤ x permit calling m

➥ solution: new element unavailable with optional < unavail

➥ asserts that the object does not provide the method

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 21

Creating membranes

➥ We first extend the ≺ relation properly:

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

¬(πt = avail ∧ (πs = denied ∨ πs = unavail))
σt 6= ⊥ ∧ σs 6= ⊥ ⇒ σt ≺ σs

t ≺ s

➥ Next, we need a rule to determine the membrane type

➥ let T ∩r

r
S be the smallest subtype of T that does not grant

more rights than S

➥ for contravariance: T ∩r

r
S is the largest supertype of S that

does not grant more rights than T

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 22

Restricting method permissions

➥ Partial order: denied < optional <
avail

unavail

➥ t ∩r

r
s: t \ s denied optional avail unavail

denied denied denied denied denied

optional unavail optional optional unavail

avail - - - avail avail - - -

unavail unavail unavail unavail unavail

➥ t ∩r

r
s: t \ s denied optional avail unavail

denied denied denied denied unavail

optional denied optional avail unavail

avail denied optional avail unavail

unavail denied denied denied unavail

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 23

Restricted subtype

T, S ∈ T

T ∩r

r
S = λm.(T (m) ∩r

r
S(m))

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

t ∩r

r
s = (πt ∩

r

r
πs, σt ∩

r

r
σs)

s ∈ M ∪ {⊥}

⊥ ∩r

r
s = ⊥

t ∈ M ∪ {⊥}

t ∩r

r
⊥ = ⊥

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

t ∩r

r
s = (As ∩r

r
At, Rt ∩

r

r
Rs)

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 24

Restricted supertype

T, S ∈ T

T ∩r

r
S = λm.(T (m) ∩r

r
S(m))

t = (πt, σt) ∈ MS
s = (πs, σs) ∈ MS

t ∩r

r
s = (πt ∩

r

r
πs, σt ∩

r

r
σs)

s ∈ M ∪ {⊥}

⊥ ∩r

r
s = ⊥

t ∈ M ∪ {⊥}

t ∩r

r
⊥ = ⊥

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

t ∩r

r
s = (As ∩r

r
At, Rt ∩

r

r
Rs)

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 25

Runtime cast actions

➥ Situation:

v
V

r1
ST

r2

➥ T 6≺ S: static type error!

➥ is already determined when loading a component

➥ T ≤ S: assign reference as is

➥ access restrictions of S are also enforced by T

➥ Otherwise: create a membrane with type T ∩r

r
S

➥ access restrictions of S are enforced by membrane and T

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 25

Runtime cast actions

➥ Situation:

v
V

r1
ST

r2

➥ T 6≺ S: static type error!

➥ is already determined when loading a component

➥ T ≤ S: assign reference as is

➥ access restrictions of S are also enforced by T

➥ Otherwise: create a membrane with type T ∩r

r
S

➥ access restrictions of S are enforced by membrane and T

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 25

Runtime cast actions

➥ Situation:

v
V

r1
ST

r2

➥ T 6≺ S: static type error!

➥ is already determined when loading a component

➥ T ≤ S: assign reference as is

➥ access restrictions of S are also enforced by T

➥ Otherwise: create a membrane with type T ∩r

r
S

➥ access restrictions of S are enforced by membrane and T

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 25

Runtime cast actions

➥ Situation:

m
rT S

v
V

r1
ST

r2

➥ T 6≺ S: static type error!

➥ is already determined when loading a component

➥ T ≤ S: assign reference as is

➥ access restrictions of S are also enforced by T

➥ Otherwise: create a membrane with type T ∩r

r
S

➥ access restrictions of S are enforced by membrane and T

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 26

Cascading membranes

➥ What happens if the assigned object already is a membrane?

➥ Situation:

v
V

r1
ST

r2
M
m

➥ Cascading membranes can lead to severe inefficiency

➥ method calls are forwarded multiple times

➥ Solution: new membrane includes restrictions of M

➥ can forward calls directly to the real object

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 26

Cascading membranes

➥ What happens if the assigned object already is a membrane?

➥ Situation:

rT S

m’

v
V

r1
ST

r2
M
m

➥ Cascading membranes can lead to severe inefficiency

➥ method calls are forwarded multiple times

➥ Solution: new membrane includes restrictions of M

➥ can forward calls directly to the real object

Types as Capabilities: The COSMA Type System ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 26

Cascading membranes

➥ What happens if the assigned object already is a membrane?

➥ Situation:

r r

m’

ST() M

v
V

r1
ST

r2
M
m

➥ Cascading membranes can lead to severe inefficiency

➥ method calls are forwarded multiple times

➥ Solution: new membrane includes restrictions of M

➥ can forward calls directly to the real object

4.3 Extensions

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 27

➥ Remove security restrictions inside a single component

➥ introduce security contexts and a generic permission “local”

➥ a reference that assures that the object is in the local context
can be downcasted without limitation

➥ Add classes to the type system

➥ direct access to attributes is allowed via a local reference

➥ Add array types

➥ array modeled as class with read() and write() method

➥ Allow unsafe casts, i.e. unsafe covariant types

➥ i.e. if S is subtype of T , allow S[] being used as T []

➥ problem: T [] has write(T e), while S[] has write(S e)

➥ S[] is not a subtype of T [], since S is not a supertype of T

➥ may result in a runtime type error when write() is called

4.3 Extensions ...

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 28

➥ Additional generic permissions, e.g. “transferable”

➥ (only) a transferable reference can be passed to a different

context

➥ allows implementation of confined types [12]

➥ e.g., objects of a class declared as non-transferrable can

never be accessed from another context

➥ Unifying structural and nominal typing [13][14]

➥ advantage of structural typing: no need to explicitly declare

subtype relationship (“implements”)

➥ problem of structural typing: cannot express semantic

restrictions

➥ solution: type system allows to specify a semantic category for

each method

5 Conclusion and Future Work

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 29

➥ Software systems should obey the POLA

➥ Capabilities combine designation with authority

➥ Object capability systems use references as capabilities

➥ fine grained access control requires the use of membranes

➥ Types can serve as a specification of fine grained access rights

➥ type system must not allow amplification of rights

➥ (restricted) downcast is possible by introducing membranes

➥ often, access rights need not be checked at runtime

➥ Future work:

➥ extension of type system (e.g., revocation)

➥ full implementation of a virtual machine using the type system

➥ including modular operating system

References

Roland Wismüller
Betriebssysteme / verteilte Systeme Secure Cooperation of Untrusted Components 30

[1] M. S. Miller and J. S. Shapiro, “Paradigm Regained: Abstraction Mechanisms for Access Control,” in Advances in Computing
Science - ASIAN 2003. Progamming Languages and Distributed Computation, ser. LNCS, vol. 2896. Springer, 2003, pp. 224–242.

[2] “Permissions vs. Authority” https://everything2.com/title/Permission+versus+Authority

[3] M. S. Miller, “Robust composition: Towards a unified approach to access control and concurrency control,” Ph.D. Thesis, Johns

Hopkins University, Baltimore, Maryland, May 2006.

[4] M. S. Miller, K. P. Yee, and J. Shapiro, “Capability Myths Demolished,” Systems Research Laboratory, Johns Hopkins University,

Technical Report SRL2003-02, 2003.

[5] T. Murray, “Analysing object-capability security,” in Proc. of the Joint Workshop on Foundations of Computer Security, Automated
Reasoning for Security Protocol Analysis and Issues in the Theory of Security, Pittsburgh, PA, USA, Jun. 2008, pp. 177–194.

[6] M. S. Miller, B. Tulloh, and J. S. Shapiro, “The Structure of Authority: Why Security Is not a Separable Concern,” in Proc. 2nd Intl.
Conf. on Multiparadigm Programming in Mozart/Oz. Charleroi, Belgium: Springer, 2004, pp. 2–20.

[7] A. Mettler, D. Wagner, and T. Close, “Joe-E: A Security-Oriented Subset of Java,” in Network and Distributed Systems Symposium.
Internet Society, Jan. 2010, pp. 357–374.

[8] “Walnut/Secure Distributed Computing.”
http://wiki.erights.org/wiki/Walnut/Secure_Distributed_Computing#Capabilities

[9] M. Stiegler, “The E Language in a Walnut.” http://www.skyhunter.com/marcs/ewalnut.html

[10] B. C. Pierce, Types and programming languages. MIT Press, 2002.

[11] R. Wismüller and D. Ludwig, “Secure Cooperation of Untrusted Components Using a Strongly Typed Virtual Machine.” International
Journal on Advances in Security, 12(1&2):53-68, June 2019.

[12] C. Grothoff, J. Palsberg and J. Vitek, “Encapsulating Objects with Confined Types.” ACM SIGPLAN Notices 36(11), Aug. 2001, pp.
32–44.

[13] D. Malayeri and J. Aldrich,“Integrating Nominal and Structural Subtyping,” in Proceedings of the European Conference on
Object-Oriented Programming (ECOOP ’08), July 2008, pp. 260–284.

[14] B. H. Liskov, “A Behavioral Notion of Subtyping,” ACM Transactions on Programming Languages and Systems, Volume 16, Issue 6,
Nov. 1994, pp 1811–1841.

http://srl.cs.jhu.edu/pubs/SRL2003-03.pdf
https://everything2.com/title/Permission+versus+Authority
http://erights.org/talks/thesis/markm-thesis.pdf
http://srl.cs.jhu.edu/ pubs/SRL2003-02.pdf
https://www.cs.ox.ac.uk/files/2690/AOCS.pdf
http://www.erights.org/talks/no-sep/secnotsep.pdf
https://www.cs.berkeley.edu/~daw/papers/joe-e-ndss10.pdf
http://wiki.erights.org/wiki/Walnut/Secure_Distributed_Computing#Capabilities
http://www.skyhunter.com/marcs/ewalnut.html
http://iariajournals.org/security/sec_v12_n12_2019_paged.pdf
https://www.researchgate.net/profile/Jan-Vitek-3/publication/2491579_Encapsulating_Objects_with_Confined_Types/links/00463522dbeb376182000000/Encapsulating-Objects-with-Confined-Types.pdf
https://www.cs.cmu.edu/~aldrich/papers/ecoop08.pdf
https://www.cs.cmu.edu/~wing/publications/LiskovWing94.pdf

	1 Motivation
	2 Access Control
	3 The Object Capability Paradigm [5][6]
	4 A Capability Type System
	4.1 Types [10]
	4.2 Types as Capabilities: The COSMA Type System [11]
	4.3 Extensions

	5 Conclusion and Future Work

