

Betriebssysteme und nebenläufige Programmierung

SoSe 2025

Roland Wismüller
Betriebssysteme / verteilte Systeme
roland.wismueller@uni-siegen.de
Tel.: 0271/740-4050, Büro: H-B 8404

Stand: 13. Mai 2025

Betriebssysteme und nebenläufige Programmierung

SoSe 2025

10 Schutz

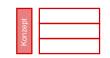
10 Schutz ...

Inhalt:

- ➡ Einführung
- Schutzmatrix
- Zugriffskontrolllisten und Capabilities

- → Tanenbaum 9.6
- → Stallings 15.2.3
- Nehmer/Sturm 11

10.1 Einführung

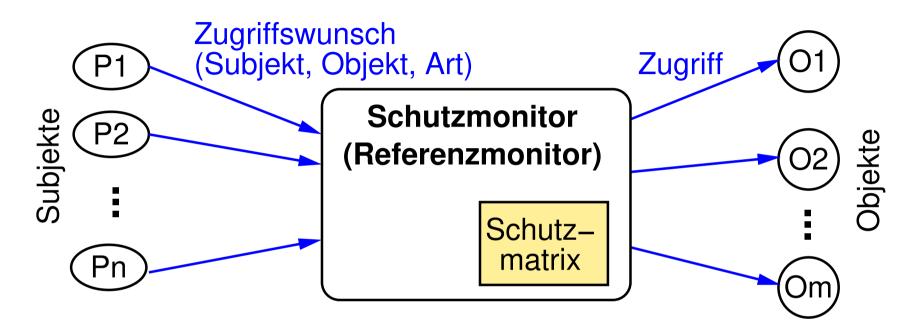


Sicherheitsdienste: AAA ("triple A")

- Authentifizierung
 - Feststellung der Identität eines Benutzers
 - typisch: Paßwort-Abfrage bei der Anmeldung
- Autorisierung
 - Vergabe von Zugriffsrechten an Benutzer
 - Wer darf was im System tun?
- Accounting
 - Protokollierung von Aktivitäten, Abrechnung

10.2 Schutzmatrix

Legt fest, wer welche Operationen auf welchen Objekten ausführen darf


Objekte →>	Datei 1	Datei 2	Datei 3	Datei 4	Datei 5	Drucker	Plotter
Benutzer 1	Lesen	Lesen Schreiben					
Benutzer 2		Lesen	Lesen	Lesen Schreiben Ausführen		Schreiben	
Benutzer 3		Lesen	×	Lesen Ausführen	Lesen Schreiben Ausführen	Schreiben	Schreiben
า Subjekte		R	echte				

- → Subjekt: z.B. Benutzer(gruppe), Prozeß eines Benutzers
- → Objekt: z.B. Datei, Gerät, (anderer) Prozeß
- Recht: Erlaubnis zur Durchführung einer Operation

10.2 Schutzmatrix ...

Realisierung des Zugriffsschutzes: Schutzmonitor

- Subjekte dürfen Indentität nicht wechseln können
- Zugriff auf Objekte darf nur über Schutzmonitor möglich sein
- Schutzmonitor muß privilegiert sein, um Zugriffe durchzuführen
- Schutzmonitor muß vertrauenswürdig sein

10.3 Zugriffskontrolllisten und Capabilities

Speicherung der Schutzmatrix

- Schutzmatrix sehr groß und sehr dünn besetzt
- Daher: zeilen- oder spaltenweise Speicherung in Listen

	Datei 1	Datei 2	Datei 3	Datei 4	Datei 5	Drucker	Plotter
Benutzer 1	Lesen	Lesen Schreiben				C	apability
Benutzer 2		Lesen	Lesen	Lesen Schreiben Ausführen		Schreiben	
Benutzer 3		Lesen		Lesen Ausführen	Lesen Schreiben Ausführen	Schreiben	Schreiben

Zugriffskontrollliste

Access Control List (ACL)

10.3 Zugriffskontrolllisten und Capabilities ...

Zugriffskontrollliste (Access Control List, ACL)

- Spalte der Schutzmatrix
- Gibt für ein Objekt an, welche Subjekte welche Rechte an dem Objekt haben
- Wird zusammen mit dem betroffenen Objekt gespeichert
 - z.B. bei Datei im zugehörigen *I-Node*
- Listenelemente: Paare (Subjekt, Rechte)
 - Subjekt: Benutzer und/oder Benutzergruppe
 - → für Subjekt oft auch Platzhalter (Wildcard) erlaubt
 - erster passender Eintrag wird verwendet

10.3 Zugriffskontrolllisten und Capabilities ...

Capability

- Zeile der Schutzmatrix
- Wird vom BS-Kern an Subjekte (Prozesse) übergeben, berechtigt zur Ausführung von Operationen auf Objekten
- Capability muß vor Manipulation geschützt werden!
 - Speicherung im BS-Kern, Prozeß erhält nur Verweis (*Handle*)
 - kryptographischer Schutz (analog zu digitaler Signatur)
 - geeignet für verteilte Systeme: Capability kann als Nachricht weitergegeben werden
- Problem: (selektiver) Widerruf von Rechten schwierig

10.3 Zugriffskontrolllisten und Capabilities ...

Beispiel: Zugriffsschutz in UNIX und Windows (2000/NT)

- Mischform aus ACLs und Capabilities
 - Rechte an Objekten werden über ACL spezifiziert
 - Prüfung der ACL aber nur beim Öffnen
 - Datei-/Geräte-Handle hat die Funktion einer Capability
 - bei den eigentlichen Zugriffen ist keine Prüfung der ACL mehr notwendig
- UNIX: ACL unterscheidet bei Subjekten nur zwischen Eigentümer, Mitgliedern derselben Gruppe und allen anderen
 - → Speicherung in 9 Bits im *I-Node*: user group others
- Windows: ACL mit Einträgen für beliebige Benutzer / Gruppen

10.4 Zusammenfassung / Wiederholung

- Sicherheitsdienste: Authentifizierung, Autorisierung, Accounting
- Schutzmatrix:
 - wer darf welche Operationen auf welchen Objekten ausführen?
- Zugriffskontrollliste (Access Control List, ACL)
 - Spalte der Schutzmatrix, beim Objekt gespeichert
- Capability
 - Zeile der Schutzmatrix, an Subjekt übergeben