
Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data i

Roland Wismüller
University of Siegen

Operating Systems and Distributed Systems
rolanda.dwismuellera@duni-siegena.dde

Stand: May 5, 2010

Towards an Automatically Distributed
Evaluation of Event Data

Background

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 1

➥ Online monitoring of parallel and distributed software

➥ Generic (distributed) monitoring system, supporting different tools

➥ goals: ease of use, scalability

(centralized)Tool

(distributed)
− acquisition, transport,

preprocessing

− abstract model of target
system

Target system (distributed)

− user Interface
− evaluation, presentation

Monitoring system

User

Lessons Learned

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 2

➥ Provide a well defined interface for the tools

➥ Provide an object-oriented model of the target system

➥ Provide for extensibility of the interface

➥ Use the event / action paradigm

➥ i.e. allow the tool to specify arbitrary actions to be executed
when an event is detected in the target system

➥ Support requests on sets of objects

➥ Make the implementation as asynchronous as possible

➥ Push execution of actions towards the event sources

First Approach: OMIS / OCM

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 3

➥ Specification and implementation of an online monitoring interface

➥ Basis: object based model of target and monitoring system

➥ system, nodes, processes, threads; counter, timers

➥ Request language for event / action relations

thread started lib call([p 1,p 2], "MPI Send") :

pa counter increment(pa c 1, $par8)

thread started lib call([p 1,p 2], "MPI Send") :

thread stop([a]) thread get backtrace([$thread])

➥ Location transparency: automatic distribution of requests

➥ Extensibility via plug-in interface for new events, actions and
objects

First Approach: OMIS / OCM ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 4

➥ Problems:

➥ “unlovely” programming in the tools
➥ tool is programmed in C++/Java
➥ monitoring system is “programmed” in OMIS language

➥ OMIS language is not really object-oriented
➥ c.f. thread started lib call([p 1,p 2], ...)

➥ extensions are difficult to program
➥ complex interface to OCM core
➥ distribution must be handled explicitly

The Tool Developer’s Wish

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 5

➥ Object oriented model of target system

➥ local (proxy) objects for nodes, processes, ...

➥ Abstractions for sets and event streams

➥ Fully integrated into Java / C++:

Set<Node> nodes = System.getNodes(...);

Set<Processes> procs = nodes.getProcesses(...);

Set<Stream<SendEvent>> ev = procs.getSendEvents(...);

IntVal tot = Set.reduce(Stream.reduce(ev.getMsgSize(),

SUM),SUM);

...

print(tot.getValue());

➥ Combined with distributed evaluation!

Towards an Implementation (1)

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 6

➥ Q: how to map this program to the distributed monitoring system?

➥ A: use data flow graphs as intermediate representation!

➥ purely functional model, only explicit (stream) communication

➥ easy to (autmatically) distribute them for execution

➥ Data flow graph for the example (3 processes)

reduce()reduce() reduce()

reduce()

getMsgSize()getMsgSize() getMsgSize()

str1 str2 str3

Previous Experience

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 7

➥ EU project CrossGrid: online performance analysis tool G-PM

➥ Performance metric specification language PMSL

➥ allows users to specify new metrics at runtime

➥ metrics are evaluated by distributed monitoring system

➥ Example of PMSL mectrics:

Comm Volume(Process[] procs, TimeInterval ti) {
PROBE send(Process, VirtualTime, int);

Value[][] sz; Value[] tmp;

int size; Process p; VirtualTime vt;

sz[p][vt] = size AT send(p, vt, size);

tmp[p] = SUM(sz[p][vt] WHERE sz[p][vt].time IN ti);

return SUM(tmp[p] WHERE p IN procs);

}

Previous Experience ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 8

Implementation using distributed evaluation

Opt.Optimization

DAG

DFG

DFG

DFG
Metrics
speci−
fication

sentation
(DAG)

Intermed.
repre−

Event /
action

relations

When metrics is defined

Distribution

C
om

pi
le

r

P
ar

tia
l

ev
al

ua
tio

n

When measurement is defined

Data flow
graph (DFG)

Previous Experience ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 8

Implementation using distributed evaluation

Opt.Optimization

DAG

DFG

DFG

DFG
Metrics
speci−
fication

sentation
(DAG)

Intermed.
repre−

Event /
action

relations

When metrics is defined

Distribution

C
om

pi
le

r

P
ar

tia
l

ev
al

ua
tio

n

When measurement is defined

Data flow
graph (DFG)

VT_SUM

AT

send(p,vt,size)size

SUMp IN procs

Previous Experience ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 8

Implementation using distributed evaluation

Opt.Optimization

DAG

DFG

DFG

DFG

Event /
action

relations

Distribution

P
ar

tia
l

ev
al

ua
tio

n

When measurement is defined

Data flow
graph (DFG)

VT_SUM

AT

size

VT_SUM

AT

sizesend(p1,vt,size) send(p2,vt,size)

procs = [p1,p2]

+

Previous Experience ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 8

Implementation using distributed evaluation

Opt.Optimization

DAG

DFG

DFG

DFG

Event /
action

relations

Distribution

P
ar

tia
l

ev
al

ua
tio

n

When measurement is defined

Data flow
graph (DFG)

VT_SUM

AT

size

VT_SUM

AT

sizesend(p1,vt,size) send(p2,vt,size)

procs = [p1,p2]

+
Process 1 Process 2

Previous Experience ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 8

Implementation using distributed evaluation

Opt.

DAG

DFG

DFG

DFG

Event /
action

relations

Distribution

When measurement is defined

Data flow
graph (DFG)

Converting the DAG into data
structures for execution in OCM

Data flow graphs

distribution to OCM
components
interpretation by OCM
plug−in

Event/action relations

monitoring the events

data transport between
data flow graphs

Towards an Implementation (2)

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 9

➥ Q: how to create the data flow graphs?

➥ A: use transparent proxies!

➥ Inspiration: ProActive (INRIA)

➥ transparent asynchronous RMI (remote method invocation)
➥ RMI immediately returns a future (proxy object)
➥ once the result arrived, method calls are forwarded to it
➥ method call blocks, if result is not yet available

➥ groups (sets)
➥ method called on group is executed for each member
➥ method result again is a group
➥ also implemented via proxy object

➥ proxy classes are generated at run time (using Java reflection)

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

b F

res

b

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

b F

res

b

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

c F

b F

x

m2()

c

res

b

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

d F

c F

b F

y

m3()

d

b

x

m2()

c

res

b

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

O

d F

c F

b F

res

b

y

m3()

d

b

x

m2()

c
...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

O

O

d F

c F

b F

x

m2()

c

res

b

y

m3()

d

b

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

O

O

O

d F

c F

b F

y

m3()

d

b

x

m2()

c

res

b

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Towards an Implementation (2) ...

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

e O

O

O

O

d F

c F

b F

y

m3()

d

b

x

m2()

c

res

b

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();

Proof-of-Concept Implementation

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 11

➥ Using ProActive run time code generator for proxy classes
➥ can generate a proxy class for every non-final class

➥ Three kinds of proxies:
➥ future proxy for asynchronous RMIs

➥ method call results in creation of a data flow node, if object
is not yet available

➥ group proxy for sets
➥ basically identical to ProActive

➥ stream proxy
➥ invokes method on each object in the stream, as it arrives
➥ method result again is a stream
➥ implemented using a data flow node, similar to future proxy

➥ Plus all kinds of combinations (e.g.: future group of streams)

The Example Revisited

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 12

Set<Node> nodes = System.getNodes(...);

Set<Processes> procs = nodes.getProcesses(...);

Set<Stream<SendEvent>> ev = procs.getSendEvents(...);

IntVal tot = Set.reduce(Stream.reduce(ev.getMsgSize(),

SUM),SUM);

...

print(tot.getValue());

reduce()reduce() reduce()

reduce()

getMsgSize()getMsgSize() getMsgSize()

str1 str2 str3

Conclusions / Status

Roland Wismüller
University of Siegen Towards an Automatically Distributed Evaluation of Event Data 13

➥ A “natural” object oriented model for online analysis is feasilbe

➥ use transparent proxies to create data flow graphs

➥ distribute the data flow graphs (and the code of the required
classes) to the target system for execution

➥ Still many issues open for research:

➥ semantics (method parameters, excution order, ...)

➥ implementation of special functions
➥ reductions, scatter, ...

➥ best way to generate proxy classes
➥ currently: set / stream of A is subclass of A

➥ distribution of data flow graphs
➥ esp. distribution of reduction methods

