d

Towards an Automatically Distributed
Evaluation of Event Data

Roland Wismdller
University of Siegen
Operating Systems and Distributed Systems
roland.wismueller @ uni-siegen.de

Stand: May 5, 2010

Eaz= = 53%32%?@'3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data |

Background

d

(1 Online monitoring of parallel and distributed software

[1 Generic (distributed) monitoring system, supporting different tools
[1 goals: ease of use, scalability

Tool (centralized)
— user Int_erface |
— evaluation, presentation

Monitoring system (distributed)

— acquisition, transport,
preprocessing

— abstract model of target

system
O, | et e
N A "\i/: ‘\'*O Target system (distributed)
O——)—0"

Eaz= = 53332%?@/'3?1§i"e%en Towards an Automatically Distributed Evaluation of Event Data 1

Lessons Learned

Provide a well defined interface for the tools
Provide an object-oriented model of the target system

Provide for extensibility of the interface

1 OO OO [

Use the event / action paradigm

[0 I.e. allow the tool to specify arbitrary actions to be executed
when an event is detected In the target system

[] Support requests on sets of objects

[Make the implementation as asynchronous as possible

[] Push execution of actions towards the event sources

Eaz= 53!32%?{9"3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 2

d

First Approach: OMIS / OCM

(1 Specification and implementation of an online monitoring interface

[] Basis: object based model of target and monitoring system
[1 system, nodes, processes, threads; counter, timers

[Request language for event / action relations

thread_started_lib_call([p_1,p-2], "MPI_Send")
pa_counter_increment(pa_c_1, $par8)

thread_started_lib_call([p_1,p-2], "MPI_Send")
thread_stop([a_]) thread_get_backtrace([$thread])

[] Location transparency: automatic distribution of requests

[] Extensibility via plug-in interface for new events, actions and
objects

Eaz= = 53%32%?@'3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 3

First Approach: OMIS / OCM ...

(I Problems:
0 “unlovely” programming in the tools

0 tool Is programmed in C++/Java
O monitoring system is “programmed” in OMIS language

(1 OMIS language Iis not really object-oriented
0 c.f. thread_started_1ib_call([p_1,p-2], ...)
[extensions are difficult to program

0 complex interface to OCM core
O distribution must be handled explicitly

Eaz= 53%32%?@'3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 4

The Tool Developer’'s Wish

[] Object oriented model of target system
[0 local (proxy) objects for nodes, processes, ...

[1 Abstractions for sets and event streams
(I Fully integrated into Java / C++:

Set<Node> nodes = System.getNodes(...);

Set<Processes> procs = nodes.getProcesses(...);

Set<Stream<SendEvent>> ev = procs.getSendEvents(...);

IntVal tot = Set.reduce(Stream.reduce(ev.getMsgSize(),
SUM) , SUM) ;

print (tot.getValue());

[1 Combined with distributed evaluation!

Eaz= = ngeggwlg?gilé%en Towards an Automatically Distributed Evaluation of Event Data 5

Towards an Implementation (1)

d

(] Q: how to map this program to the distributed monitoring system?

[1 A: use data flow graphs as intermediate representation!
[0 purely functional model, only explicit (stream) communication
[easy to (autmatically) distribute them for execution

[1 Data flow graph for the example (3 processes)

}
(reduce()) (reduce()) (reduce())
! ! }

(getMsgSize()) (getMsgSize()) (getMsgSize())

Eaz= = 53%32%?@'3?“&'&%% Towards an Automatically Distributed Evaluation of Event Data 6

Previous Experience

d

[1 EU project CrossGrid: online performance analysis tool G-PM

[1 Performance metric specification language PMSL
[0 allows users to specify new metrics at runtime
[metrics are evaluated by distributed monitoring system

[Example of PMSL mectrics:

Comm_Volume (Process[] procs, TimeInterval ti) {
PROBE send(Process, VirtualTime, int);
Value[] [] sz; Valuel[] tmp;
int size; Process p; VirtualTime vt;
sz[p] [vt] = size AT send(p, vt, size);
tmp [p] = SUM(sz[p] [vt] WHERE sz[p] [vt].time IN ti);
return SUM(tmp[p] WHERE p IN procs);

Eaz= = 53%32%?@'3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 4

Previous Experience ...

Implementation using distributed evaluation

Optimization _ Opt.
% (7 c_6§ Q Distribution
_ % Intermed. | 5 Data flow DFG
Metrlgs O repre— QO O graph (DFG)
Specl~ ™ sentation | | PAC DFG
fication Event /
- y, _(DAG) | — action DEG
relations
_ J J
Y Y
When metrics is defined When measurement is defined

Eaz= ngeggwlg?gilé%en Towards an Automatically Distributed Evaluation of Event Data 8

Previous Experience ...

Implementation using distributed evaluation

.
Optimization o
224
— = e IN procs} - --(SUM)
_ % Intermed. | 5 PTP
eSO 1 repre- |2 T
Cl— [
t(':(IJn sentation (VT SUM)
i
_0r0) |
\
~ 7 N
an metrics is defined (size) (send(p,vt,size))
. y

Eaz= 53%32%?@"3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 8

Previous Experience ...

Implementation using distributed evaluation

s \
- Opt. | procs = [pl,p2]
O /
55 47
c <
O o /\
e
DRE \f (VT _SUM) (VT _SUM)
\
v
_ “
When me| (size) (send(pl,vt,size) (size) (send(p2,vt,size)
1§ y
=5] ngeggwig?gilé%en Towards an Automatically Distributed Evaluation of Event Data 8

Previous Experience ...

Implementation using distributed evaluation

e R
- Opt. . procs = [p1,p2]
@))
= © Q Process 1 Process 2
L35 17 0 e~) el <
— CG P \\
® > PRe 'R
al (¢D] P \\
— DAG d o \
\, L (VT_Sum) .+ (VT _SuUM) S
;X II '| l, ‘\
1 I) I 1
v s '.
N . ! - '-
When me| ' (size) (send(pl,vt,size): !(size) (send(p2,vt,size) :
\ [: 1 I
o » :
[\ ! Y
=5] ngegpsi\t/yi(s)g‘nsuilggen Towards an Automatically Distributed Evaluation of Event Data 8

Previous Experience ...

Implementation using distributed evaluation

t.
2 Distribition
Data flow DFG
graph (DFG)
\G DFG
Event /
_ action DEG
relations
\\ J
Y N

A

'hen measurement is defin‘eo[

'

'

-

Converting the DAG into data
structures for execution in OCM
w Data flow graphs

w distribution to OCM
components
= nterpretation by OCM

plug—in
w Event/action relations
= monitoring the events

= data transport between
data flow graphs

=T%="" Roland |
==Fe== University of Siegen

Wismlller

Towards an Automatically Distributed Evaluation of Event Data

Towards an Implementation (2)

[J Q: how to create the data flow graphs?

[] A: use transparent proxies!

(I Inspiration: ProActive (INRIA)

[0 transparent asynchronous RMI (remote method invocation)

0 RMI immediately returns a future (proxy object)

0 once the result arrived, method calls are forwarded to it
0 method call blocks, if result is not yet available

[groups (sets)
0 method called on group is executed for each member
0 method result again is a group

0 also implemented via proxy object
[proxy classes are generated at run time (using Java reflection)

Eaz= = 53!32%?{9"3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 9

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

O but we have to remember to method to be executed
— we end up with a data flow graph

b = a.nmi();
c = b.n2(X);
d = c.mB(y,b):
e - d. mi();

="&="" Roland Wismuller

ZIE2IE University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

O but we have to remember to method to be executed
— we end up with a data flow graph

b = a. ml() : b [+—={F
C = b.n2(x);
d = c.nB(y,b): o}
S res
e = d.mi():
=5] ngeggwig?gilé%en Towards an Automatically Distributed Evaluation of Event Data 10

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

O but we have to remember to method to be executed
— we end up with a data flow graph

b = a. ml() : b [+—={F
c = b.nR2(x);
d = c.nB(y,b): o}
S res
e = d.mi():
=5] ngeggwig?gilé%en Towards an Automatically Distributed Evaluation of Event Data 10

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

O but we have to remember to method to be executed
— we end up with a data flow graph

b = a. ml() : b [+—={F
b. m2(x) -
C = D. X), C|—-+1+—»F
. m2()
d = c.nB(y, b); o) X
S res
e = d.mi():
=5 'jfﬁﬁgeggwig?gi'ée&en Towards an Automatically Distributed Evaluation of Event Data 10

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

O but we have to remember to method to be executed
— we end up with a data flow graph

b = a. ml(); b| +=F
c = b.n2(x); c | 4F
d: c.nB(y, b); d| 4—={F
e: d. mi();

="&="" Roland Wismuller

ZIE2IE University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

O but we have to remember to method to be executed
— we end up with a data flow graph

b = a. ml(); b [4—={FH—=O
c = b.n2(x); c | 4F

d: c.nB(y, b); d | 4+=F

e: d. md();

="&="" Roland Wismuller

ZIE2IE University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

O but we have to remember to method to be executed
— we end up with a data flow graph

b = a. m(); b [+={H—=[O
c = b.n2(x); c | +={H—={O
d: c.nB(y, b); d | +—=F

e: d. ma();

="&="" Roland Wismuller

ZIE2IE University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

0 but we have to remember to method to be executed
— we end up with a data flow graph

b = a. m(); b [+={H—=[O
c = b.n2(x); c | +={H—={O
d: c.nB(y, b); d | +—{F—O
e: d. ma();

="&="" Roland Wismuller

ZIE2IE University of Siegen Towards an Automatically Distributed Evaluation of Event Data 10

Towards an Implementation (2) ...

d

[] Observation: invoking a method on a future doesn’t have to block
[we can immediately return another future as the result

0 but we have to remember to method to be executed
— we end up with a data flow graph

b = a.nml(); b [=0
c = b.n2(x); c | +={H—={O
d = c.nB(y, b); d | +—{F—O
e =d m(),; e | +={0
=5] Bg!gg%i\t’yig&n&%ﬁen Towards an Automatically Distributed Evaluation of Event Data 10

d

Proof-of-Concept Implementation

[] Using ProActive run time code generator for proxy classes
[1 can generate a proxy class for every non-final class

[] Three kinds of proxies:
[future proxy for asynchronous RMiIs

0 method call results in creation of a data flow node, if object
IS not yet available

[1 group proxy for sets
O basically identical to ProActive
[0 stream proxy

0 invokes method on each object in the stream, as it arrives
0 method result again is a stream
O implemented using a data flow node, similar to future proxy

(] Plus all kinds of combinations (e.g.: future group of streams)

Eaz= = 53!32%?{9"3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 11

The Example Revisited

d

Set<Node> nodes = System.getNodes(...);

Set<Processes> procs = nodes.getProcesses(...);

Set<Stream<SendEvent>> ev = procs.getSendEvents(...);

IntVal tot = Set.reduce(Stream.reduce(ev.getMsgSize(),
SUM) , SUM) ;

print (tot.getValue());

A

(reduce()) (reduce()) (reduce())
! ! }

(getMsgSize()) (getMsgSize()) (getMsgSize())

Eaz= = 53%32%?@'3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 12

Conclusions / Status

d

(1 A “natural” object oriented model for online analysis is feasilbe
[use transparent proxies to create data flow graphs

[distribute the data flow graphs (and the code of the required
classes) to the target system for execution

(] Still many issues open for research:
[1 semantics (method parameters, excution order, ...)
[implementation of special functions
O reductions, scatter, ...
[0 best way to generate proxy classes
O currently: set / stream of A is subclass of A
[0 distribution of data flow graphs
O esp. distribution of reduction methods

Eaz= = 53!32%?{9"3?1§i'ée§en Towards an Automatically Distributed Evaluation of Event Data 13

