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➥ Online monitoring of parallel and distributed software

➥ Generic (distributed) monitoring system, supporting different tools

➥ goals: ease of use, scalability

(centralized)Tool

(distributed)
− acquisition, transport,

preprocessing

− abstract model of target
system

Target system (distributed)

− user Interface
− evaluation, presentation

Monitoring system

User



Lessons Learned
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➥ Provide a well defined interface for the tools

➥ Provide an object-oriented model of the target system

➥ Provide for extensibility of the interface

➥ Use the event / action paradigm

➥ i.e. allow the tool to specify arbitrary actions to be executed
when an event is detected in the target system

➥ Support requests on sets of objects

➥ Make the implementation as asynchronous as possible

➥ Push execution of actions towards the event sources



First Approach: OMIS / OCM
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➥ Specification and implementation of an online monitoring interface

➥ Basis: object based model of target and monitoring system

➥ system, nodes, processes, threads; counter, timers

➥ Request language for event / action relations

thread started lib call([p 1,p 2], "MPI Send") :

pa counter increment(pa c 1, $par8)

thread started lib call([p 1,p 2], "MPI Send") :

thread stop([a ]) thread get backtrace([$thread])

➥ Location transparency: automatic distribution of requests

➥ Extensibility via plug-in interface for new events, actions and
objects



First Approach: OMIS / OCM ...
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➥ Problems:

➥ “unlovely” programming in the tools
➥ tool is programmed in C++/Java
➥ monitoring system is “programmed” in OMIS language

➥ OMIS language is not really object-oriented
➥ c.f. thread started lib call([p 1,p 2], ...)

➥ extensions are difficult to program
➥ complex interface to OCM core
➥ distribution must be handled explicitly



The Tool Developer’s Wish
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➥ Object oriented model of target system

➥ local (proxy) objects for nodes, processes, ...

➥ Abstractions for sets and event streams

➥ Fully integrated into Java / C++:

Set<Node> nodes = System.getNodes(...);

Set<Processes> procs = nodes.getProcesses(...);

Set<Stream<SendEvent>> ev = procs.getSendEvents(...);

IntVal tot = Set.reduce(Stream.reduce(ev.getMsgSize(),

SUM),SUM);

...

print(tot.getValue());

➥ Combined with distributed evaluation!



Towards an Implementation (1)
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➥ Q: how to map this program to the distributed monitoring system?

➥ A: use data flow graphs as intermediate representation!

➥ purely functional model, only explicit (stream) communication

➥ easy to (autmatically) distribute them for execution

➥ Data flow graph for the example (3 processes)

reduce()reduce() reduce()

reduce()

getMsgSize()getMsgSize() getMsgSize()

str1 str2 str3



Previous Experience
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➥ EU project CrossGrid: online performance analysis tool G-PM

➥ Performance metric specification language PMSL

➥ allows users to specify new metrics at runtime

➥ metrics are evaluated by distributed monitoring system

➥ Example of PMSL mectrics:

Comm Volume(Process[] procs, TimeInterval ti) {
PROBE send(Process, VirtualTime, int);

Value[][] sz; Value[] tmp;

int size; Process p; VirtualTime vt;

sz[p][vt] = size AT send(p, vt, size);

tmp[p] = SUM(sz[p][vt] WHERE sz[p][vt].time IN ti);

return SUM(tmp[p] WHERE p IN procs);

}



Previous Experience ...
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Implementation using distributed evaluation
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Towards an Implementation (2)
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➥ Q: how to create the data flow graphs?

➥ A: use transparent proxies!

➥ Inspiration: ProActive (INRIA)

➥ transparent asynchronous RMI (remote method invocation)
➥ RMI immediately returns a future (proxy object)
➥ once the result arrived, method calls are forwarded to it
➥ method call blocks, if result is not yet available

➥ groups (sets)
➥ method called on group is executed for each member
➥ method result again is a group
➥ also implemented via proxy object

➥ proxy classes are generated at run time (using Java reflection)



Towards an Implementation (2) ...
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➥ Observation: invoking a method on a future doesn’t have to block

➥ we can immediately return another future as the result

➥ but we have to remember to method to be executed
⇒ we end up with a data flow graph

...
b = a.m1();

d = c.m3(y,b);

...
c = b.m2(x);

...

e = d.m4();
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Proof-of-Concept Implementation
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➥ Using ProActive run time code generator for proxy classes
➥ can generate a proxy class for every non-final class

➥ Three kinds of proxies:
➥ future proxy for asynchronous RMIs

➥ method call results in creation of a data flow node, if object
is not yet available

➥ group proxy for sets
➥ basically identical to ProActive

➥ stream proxy
➥ invokes method on each object in the stream, as it arrives
➥ method result again is a stream
➥ implemented using a data flow node, similar to future proxy

➥ Plus all kinds of combinations (e.g.: future group of streams)



The Example Revisited
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Set<Node> nodes = System.getNodes(...);

Set<Processes> procs = nodes.getProcesses(...);

Set<Stream<SendEvent>> ev = procs.getSendEvents(...);

IntVal tot = Set.reduce(Stream.reduce(ev.getMsgSize(),

SUM),SUM);

...

print(tot.getValue());

reduce()reduce() reduce()

reduce()

getMsgSize()getMsgSize() getMsgSize()

str1 str2 str3



Conclusions / Status
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➥ A “natural” object oriented model for online analysis is feasilbe

➥ use transparent proxies to create data flow graphs

➥ distribute the data flow graphs (and the code of the required
classes) to the target system for execution

➥ Still many issues open for research:

➥ semantics (method parameters, excution order, ...)

➥ implementation of special functions
➥ reductions, scatter, ...

➥ best way to generate proxy classes
➥ currently: set / stream of A is subclass of A

➥ distribution of data flow graphs
➥ esp. distribution of reduction methods


