
���������� ��� ��� ���
������

Interoperability of Run-time Tools:
Requirements and Concepts

Roland Wismüller

Lehrstuhl für Rechnertechnik und Rechnerorganisation, LRR-TUM
Technische Universität München, Germany

e-mail: wismuell@in.tum.de
www: www.in.tum.de/ � wismuell

c
�

Roland Wismüller, TU München 0

Agenda
���������� ��� ��� ���
������

1. Introduction

➥ Run-time tools, interoperability

2. A Typical Scenario

➥ debugger with random access to program states

➥ required individual tools

3. Interactions Between Tools

➥ requirements for a supporting infrastructure

➥ existing infrastructures

4. Implementation of the Requirements in the OCM

5. Conclusions and Future Work

c
�

Roland Wismüller, TU München 1

1. Introduction
���������� ��� ��� ���
������

Run-Time Tools (On-line Tools)

➥ Monitor, analyze und control the execution of a distributed
target system (HW+SW)

➥ E.g. debuggers, performance analyzers, load balancers, ...

➥ Common properties:

➥ event based scheme of operation

➥ distributed structure:
➥ distributed monitor/control components

(monitoring system)
➥ (usually) centralized analysis component
➥ centralized user interface (for interactive tools)

c
�

Roland Wismüller, TU München 2

1. Introduction (ctd.)
	�	�	�				 			 			 			
	�	�		

Typical Structure of a Tool

Proc. 1
Proc. 2

Local

GUI

comp. comp.
Local

Sema. 1 Proc. 4

Proc. 3

Component
Central

Node 2Node 1

c

Roland Wismüller, TU München 3

1. Introduction (ctd.)
���������� ��� ��� ���
������

Interoperability

➥ Dazzling term with lots of different definitions:

➥ polylingual software (e.g. C and Fortran)

➥ communication of distributed programs (e.g. CORBA)

➥ data bases (relational vs. OO)

➥ ...

➥ An attempt of a more general definition:

Interoperability is the ability of independent software
components (not specifically designed for that purpose)
to cooperate at a syntactic and semantic level.

c
�

Roland Wismüller, TU München 4

1. Introduction (ctd.)
���
��

Interoperability of On-line Tools

➥ Multiple tools cooperate in the monitoring and control of the
same target system

Motivation:

➥ For the user:

➥ concurrent use of tools for different tasks

➥ combined use can lead to additional benefits

➥ For the tool developer:

➥ enhanced modularity

➥ “factor out” target system dependencies

c
�

Roland Wismüller, TU München 5

2. A Typical Scenario
���������� ��� ��� ���
������

Goal:

➥ Efficient debugging of long running programs

➥ Debugger with random access to (past) program states

Idea:

➥ Periodically create global checkpoints

➥ Any desired program state can be reached by re-executing
from the immediately preceeding checkpoint

Current stateCheckpoint Target state

c
�

Roland Wismüller, TU München 6

2. A Typical Scenario (ctd.)
���������� ��� ��� ���
������

Implementation

➥ Combine a debugger and a checkpointer

➥ Plus:

➥ a visualizer as a means to specify the target state

➥ a deterministic execution controller

different execution after restart

receipt of a message

c
�

Roland Wismüller, TU München 7

2.1. The Debugger DETOP
���������� ��� ��� ���
������

Goal:

➥ Debugging of process sets

Implementation:

➥ Hierarchical, distributed design

➥ Local components use OS interfaces

➥ process monitoring (e.g. signals, exceptions)

➥ process control (e.g. stopping)

➥ read / write process memory

➥ No support of programming model (PVM)

➥ exception: use of PVM task identifiers

c
�

Roland Wismüller, TU München 8

2.2. Checkpointing with CoCheck
���������� ��� ��� ���
������

Goal:

➥ Consistent checkpointing of communicating processes

Basis:

➥ Checkpointer for independent processes (Condor)

➥ Protocol to flush communication links

➥ store all messages is receiver’s address space

Implementation:

➥ Intercept most PVM calls

➥ receive stored messages

➥ translate task identifiers
c
�

Roland Wismüller, TU München 9

2.3. The Visualizer VISTOP
���������� ��� ��� ���
������

Goal:

➥ State based visualization
of program execution

Implementation:

➥ Record calls to PVM
library routines

➥ Model state of PVM

➥ Display a selected
state in detail

Global event trace

Model

Event trace Event trace

Display

Sequence
of states

Process 2Process 1

c
�

Roland Wismüller, TU München 10

2.4. Deterministic Execution with Codex
���������� ��� ��� ���
������

Goal:

➥ Deterministic execution according to specified access
patterns for communication objects

Implementation:

➥ Intercept PVM receive calls

➥ check which message should be received according to the
specified pattern

➥ receive this message using a PVM call

m2 m1
m2

m1

1

2

m2 Process 3
Comm. object
(message queue)

C
on

tr
ol

Process 2

Process 1

P
at

te
rn

c
�

Roland Wismüller, TU München 11

3. Tool Interactions
���������� ��� ��� ���
������

Example 1: Concurrent Accesses

➥ CoCheck, VISTOP, and Codex monitor PVM calls in the same
processes

➥ CoCheck and Codex modify parameters of these calls

Lesson learned from OS’s and DBS’s

➥ We need a dedicated layer that coordinates the accesses
(voluntary coordination doesn’t work!)

Requirement 1: Common Monitoring System

➥ We need a common open monitoring interface that
coordinates accesses to the target system

c
�

Roland Wismüller, TU München 12

3. Tool Interactions (ctd.)
���������� ��� ��� ���
������

Multiple Tools Monitoring the Same Target System

Comp. Comp.
Local

GUI

Component
CentralCentral

Local

GUI

Component

Local

Node 1 Node 2

Comp.
Local
Comp.

Process 4

Process 1

Semaphore 1

Process 2
Process 3

c
�

Roland Wismüller, TU München 13

3. Tool Interactions (ctd.)
���������� ��� ��� ���
������

Common Interface to Target System

Local
comp.

Process 2

Semaphore 1

Local

Node 1 Node 2

Process 3

Local Local
comp.

Process 4

GUI GUI

comp.

Process 1

comp.

Central
component
Central

component

Common distributed monitoring interface

c

Roland Wismüller, TU München 14

3. Tool Interactions (ctd.)
!�!�!�!!!! !!! !!! !!!
!�!�!!

Example 2: GUI Consistency

➥ Tools should provide a consistent view of the system

➥ But:

➥ DETOP always displays the current state

➥ VISTOP can display an arbitrary (past) state

➥ Solution:

➥ when DETOP is active: VISTOP shows current state

➥ when scrolling back in VISTOP: inactivate DETOP

➥ In addition (due to event buffering):

➥ when a process is stopped: VISTOP must read event buffer

c
"

Roland Wismüller, TU München 15

3. Tool Interactions (ctd.)
#�#�#�#### ### ### ###
#�#�##

Requirement 2: Direct Interactions

➥ Notification of events
occuring in other tools

➥ Execution of actions in
other tools

Requirement 3:
Indirect Interactions

➥ Monitoring of transitions
of object states (caused by other tools)

DETOPVISTOP

stopped stop

inactivate

activated

Process

c
$

Roland Wismüller, TU München 16

3. Tool Interactions (ctd.)
%�%�%�%%%% %%% %%% %%%
%�%�%%

Example 3: Transparency

➥ Restart by CoCheck leads to new task identifiers

➥ Other tools should still see the old ones

➥ Identifiers are determined via monitoring interface

Requirement 4: Intercepting Object Accesses

➥ Mechanism to intercept object accesses of other tools

➥ Modification of requests and/or results

c
&

Roland Wismüller, TU München 17

3. Tool Interactions (ctd.)
'�'�'�'''' ''' ''' '''
'�'�''

Example 4: The Really Bad Case

➥ VISTOP models the PVM receive queues

➥ Codex violates the FIFO semantics of these queues

➥ order of receipt
() order of entry in queue

➥ Violates a basic assumption of VISTOP

➥ Requires extensive modifications of at least one tool

Recommendation:

➥ Avoid implicit assumptions

➥ Anticipate the presence of other tools

c
*

Roland Wismüller, TU München 18

3. Tool Interactions (ctd.) +�+�+�++++ +++ +++ +++
+�+�++

Summary: Requirements for an Environment
Supporting Interoperable On-Line Tools

➥ “Multi-user” interface for monitoring

➥ coordinates concurrent accesses to target system

➥ Events and actions in other tools

➥ enable direct tool interactions

➥ Monitoring of object state transitions

➥ enable indirect tool interactions

➥ Interception and modification of object accesses

➥ maintain views of other tools

c
,

Roland Wismüller, TU München 19

A Short Look at Existing Infrastructures -�-�-�---- --- --- ---
-�-�--

+

(+)

+

o

+

-

-

+

-

+

+

+

-

-

+

+

o

-

-

o

-

+

-

-

-

-

-

-

+

?

-

-

-

+

-

+

+

-

-

-

o

-

- - o + + +

C
or

ba

To
ol

Ta
lk

P
C

TE

D
P

C
L

D
A

M
S

O
C

M

 Coordination

Direct Interactions

 Events

 Actions

Monitoring Interface

Multiple Tools

Tool integration
Monitoring systems

Communic. systems

Access Notification

Access Interception

c
.

Roland Wismüller, TU München 20

4. Implementation in the OCM /�/�/�//// /// /// ///
/�/�//

The Distributed Monitoring System OCM

➥ Basic concepts:

➥ object model of the target system

➥ event / action paradigm
➥ services: detection of events, access to objects
➥ can be combined in conditional requests, e.g.:02143457698;:<1=6;>2:@?A5B5DCA:4>E0GFDHBHI598 JAKLHA:IMONAP Q

0R1434576S84:ST45U0V:<?A6XWEYZ0[3V6;W25 JAK]\^0_1;3V576287N ` a=P

➥ Implementation:

➥ distributed server processes with a hierarchical structure

➥ event detection and execution of actions are also
performed in the context of the target processes

c
b

Roland Wismüller, TU München 21

4. Implementation in the OCM (ctd.) c�c�c�cccc ccc ccc ccc
c�c�cc

“Multi-user” Interface for Monitoring

➥ OCM operates as a server

➥ Each tool has its private “environment”

➥ e.g. definition of the target system

➥ Synchronization:

➥ single actions on a single object are atomic

➥ atomic multicast communication

➥ requests can be globally locked

c
d

Roland Wismüller, TU München 22

4. Implementation in the OCM (ctd.) e�e�e�eeee eee eee eee
e�e�ee

Events and Actions in Other Tools

➥ OCM supports event detection / action execution in the
context of target processes

➥ Available events / actions detected at run-time (incl. interfaces)

➥ Necessary extension

➥ include tools into object model of target system
➥ tool object is derived from process object
➥ services on processes are now also available on tools

➥ removes distinction between tools and monitored system

c
f

Roland Wismüller, TU München 23

4. Implementation in the OCM (ctd.) g�g�g�gggg ggg ggg ggg
g�g�gg

Monitoring of Object State Transitions

➥ Can be realized via event services

➥ Currently only special cases, e.g. h2i4jlkBm9n;o<iAmXp2o@qAk7k@rIo;pEhts<u7uAk2n

Interception and Modification of Object Accesses

➥ Not yet available in the OCM

Common Feature

➥ Abstract: monitoring activities of the monitoring system

➥ Problems: implementation, appropriateness of interface

➥ More specific: detection of object accesses

c
v

Roland Wismüller, TU München 24

4. Implementation in the OCM (ctd.) w�w�w�wwww www www www
w�w�ww

Detection of Object Accesses

➥ Goal:

➥ generic detection mechanism

➥ e.g. “ xAyIz is stopped”, “TID of xAy7{ is read”

➥ Requirements:

➥ (unique) identification for object components
➥ components must be part of OMIS object model
➥ components must not overlap (i.e. no aliasing)

➥ protected access mechanism to object components
➥ ensure that all accesses are detected
➥ manipulation of objects only by writing components

c
|

Roland Wismüller, TU München 25

4. Implementation in the OCM (ctd.) }�}�}�}}}} }}} }}} }}}
}�}�}}

Detection of Object Accesses (ctd.)

➥ Problems:

➥ implicit change of object components in OS calls

➥ dynamic extensibility of OMIS/OCM

➥ efficient implementation

➥ Implementation:

➥ object ~ dynamic array of pointers to static structures

➥ access via C macros that include matching and notification

➥ matching: compare with specifications in object class

➥ Overhead per access:

➥ 6 memory reads, 3 conditional jumps (best case)

c
�

Roland Wismüller, TU München 26

5. Conclusions and Future Work ���������� ��� ��� ���
������

➥ Combination of run-time tools is a promising way of
implementing advanced tool environments

➥ Interoperability is impossible without a proper support
environment (monitoring system)

➥ This is being more and more recognized

➥ e.g. DPCL (IBM), DAMS (Univ. Lisbon, Portugal), ...

➥ Current work in OCM:

➥ direct tool interactions

➥ extended object model and detection of object accesses

➥ Future work: full implementation of the tool scenario

c
�

Roland Wismüller, TU München 27

