543

Interoperability of Run-time Tools:
Requirements and Concepts

Roland Wismuller

Lehrstuhl fir Rechnertechnik und Rechnerorganisation, LRR-TUM
Technische Universitat Minchen, Germany
e-mail: wismuell@in.tum.de
www: www.in.tum.de/~wismuell

@©Roland Wismiller, TU Minchen

54

Agenda

1. Introduction
[] Run-time tools, interoperability
2. A Typical Scenario

[] debugger with random access to program states
[] required individual tools

3. Interactions Between Tools

[] requirements for a supporting infrastructure
[] existing infrastructures

4. Implementation of the Requirements in the OCM

5. Conclusions and Future Work

@©Roland Wismiller, TU Minchen

R
T

1. Introduction

Run-Time Tools (On-line Tools)

(] Monitor, analyze und control the execution of a distributed
target system (HW+SW)

[1 E.g. debuggers, performance analyzers, load balancers, ...
[] Common properties:

[0 event based scheme of operation

O distributed structure:

O distributed monitor/control components
(monitoring system)

0 (usually) centralized analysis component

0 centralized user interface (for interactive tools)

@©Roland Wismiller, TU Minchen 2

Typical Structure of a Tool

1. Introduction (ctd.)

Central
Component

GUI

@©Roland Wismiller, TU Minchen

R .
TLTI 1. Introduction (ctd.)

Interoperability

[1 Dazzling term with lots of different definitions:

[0 polylingual software (e.g. C and Fortran)
[0 communication of distributed programs (e.g. CORBA)

[l data bases (relational vs. OO)
...

(] An attempt of a more general definition:

Interoperability is the ability of independent software
components (not specifically designed for that purpose)
to cooperate at a syntactic and semantic level.

©Roland Wismiiller, TU Miinchen 4

R .
TLTI 1. Introduction (ctd.)

Interoperability of On-line Tools

(1 Multiple tools cooperate in the monitoring and control of the
same target system

Motivation:

[1 For the user:

[0 concurrent use of tools for different tasks
0 combined use can lead to additional benefits

[] For the tool developer:

[l enhanced modularity
[“factor out” target system dependencies

©Roland Wismiller, TU Minchen 5

R
Tim

2. A Typical Scenario

Goal:

(] Efficient debugging of long running programs

[1 Debugger with random access to (past) program states

ldea:

(1 Periodically create global checkpoints

[1 Any desired program state can be reached by re-executing
from the immediately preceeding checkpoint

Checkpoint Target state Current state

@©Roland Wismiller, TU Minchen 6

R
TLTI 2. A Typical Scenario (ctd.)

Implementation

[] Combine a debugger and a checkpointer
[] Plus:

[l avisualizer as a means to specify the target state
[l a deterministic execution controller

receipt of a message

different execution after restart

©Roland Wismiiller, TU Miinchen I

R
T

2.1. The Debugger DETOP

Goal:

[] Debugging of process sets

Implementation:

[1 Hierarchical, distributed design
[] Local components use OS interfaces

[l process monitoring (e.g. signals, exceptions)
[process control (e.g. stopping)
[read / write process memory

(] No support of programming model (PVM)

[0 exception: use of PVM task identifiers

@©Roland Wismiller, TU Minchen 8

R
TLTI 2.2. Checkpointing with CoCheck

Goal:

[1 Consistent checkpointing of communicating processes

Basis:

[] Checkpointer for independent processes (Condor)

(1 Protocol to flush communication links

[l store all messages is receiver’s address space

Implementation:

(] Intercept most PVM calls

[l receive stored messages
[l translate task identifiers

@©Roland Wismiller, TU Minchen 9

R
Tl

2.3. The Visualizer VISTOP

Goal: [Display .\]

[] State based visualization A
: Sequence |0 _| . -
of program execution [Of e ™o J
A
Implementation: [Modd %]
[Record calls to PVM i
library routines [Global event trace]
0—0—0—0—0—0—0—0—>
(1 Model state of PVM o~
. [Event trace] [Event trace]
[] Display a selected oo o

state in detall
(Process D (Process 2)

©Roland Wismiiller, TU Miinchen 10

R
m 2.4. Deterministic Execution with Codex

Goal:

[] Deterministic execution according to specified access
patterns for communication objects

Implementation:

(] Intercept PVM receive calls

[check which message should be received according to the
specified pattern

[0 recelve this message using a PVM call

CProcess M 2

)
—= Comm. object 2l o |
l/&{(message queue) S HCPVOCGSS C’; |
m2 S
CProcess 2/ O

|
|
|

©Roland Wismiiller, TU Miinchen 11

I
/

—_ —_- —_- —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— — e e e e e — — — — —

R
Tl

3. Tool Interactions

Example 1: Concurrent Accesses

[1 CoCheck, VISTOP, and Codex monitor PVM calls in the same
processes

[CoCheck and Codex modify parameters of these calls
Lesson learned from OS’s and DBS’s

[We need a dedicated layer that coordinates the accesses
(voluntary coordination doesn’t work!)

Requirement 1. Common Monitoring System

[We need a common open monitoring interface that
coordinates accesses to the target system

©Roland Wismiiller, TU Miinchen 12

573

3. Tool Interactions (ctd.)

Multiple Tools Monitoring the Same Target System

GUI GUI

\ Central ..., | Central L

Component Component

e e

Local |=--»| Local
Comp. Comp. L~ Comp. [<"~>] Comp.

N f
(Process :Dw(Process 2) —V(Process 2’9\

N\

Semaphore

(Process éB

Node 1

©Roland Wismiiller, TU Miinchen 13

R
Tm

3. Tool Interactions (ctd.)

Common Interface to Target System

GU Central Central GUI
component component
, N [
Local Local Local Local
comp. comp. comp. comp.
Common distributed monitoring interface j

=
’V(Process ?9\

(Process 49

(Process 1)N|&(Process 2)

(Semaphore g

Node 1

©Roland Wismiiller, TU Miinchen 14

R
T

3. Tool Interactions (ctd.)

Example 2: GUI Consistency

[] Tools should provide a consistent view of the system
L] But:

[1 DETOP always displays the current state
[VISTOP can display an arbitrary (past) state
(] Solution:

[0 when DETOP is active: VISTOP shows current state
[when scrolling back in VISTOP: inactivate DETOP

(] In addition (due to event buffering):

[when a process is stopped: VISTOP must read event buffer

@©Roland Wismiller, TU Minchen

15

R
Tim

3. Tool Interactions (ctd.)

Requirement 2: Direct Interactions

[1 Notification of events
occuring in other tools

_ activated__
_ _ _ VISTOP ~| DETOP
[] Execution of actions in ~ inactivate
other tools
stopped °._ stop
Requirement 3: (P‘rocess)

Indirect Interactions

(] Monitoring of transitions
of object states (caused by other tools)

©Roland Wismiiller, TU Miinchen 16

R
T

3. Tool Interactions (ctd.)

Example 3: Transparency

[] Restart by CoCheck leads to new task identifiers
[] Other tools should still see the old ones

[1 ldentifiers are determined via monitoring interface

Requirement 4: Intercepting Object Accesses

[Mechanism to intercept object accesses of other tools

[1 Modification of requests and/or results

©Roland Wismiiller, TU Miinchen 17

R .
TLTI 3. Tool Interactions (ctd.)

Example 4: The Really Bad Case

I VISTOP models the PVM receive queues
[] Codex violates the FIFO semantics of these queues
[order of receipt # order of entry in queue

[] Violates a basic assumption of VISTOP

[] Requires extensive modifications of at least one tool

Recommendation:

(] Avoid implicit assumptions

(] Anticipate the presence of other tools

@©Roland Wismiller, TU Minchen

18

R
T

3. Tool Interactions (ctd.)

Summary: Requirements for an Environment
Supporting Interoperable On-Line Tools

(1 “Multi-user” interface for monitoring
[coordinates concurrent accesses to target system
[] Events and actions in other tools
[enable direct tool interactions
(] Monitoring of object state transitions
[enable indirect tool interactions
(] Interception and modification of object accesses

0 maintain views of other tools

©Roland Wismiiller, TU Miinchen 19

R
T

Communic. systems

A Short Look at Existing Infrastructures

=
Toollint.egration S % w | o 0 | o
Monitoring systems 8 O 8 % <Qt 8
Monitoring Interface - - o) + + +
Multiple Tools + + + + +
Coordination (+) | - + - +
Direct Interactions + + o - - -
. Events | o | + | - | - | -] -
. Actons | 4 |+ | - | - |- |-
Access Notification - - o) - + o)

Access Interception

@©Roland Wismiller, TU Minchen

20

R
LT 4. Implementation in the OCM

The Distributed Monitoring System OCM

[] Basic concepts:

[object model of the target system

[event / action paradigm

0 services: detection of events, access to objects
0 can be combined in conditional requests, e.g.:
thread_has_been_stopped([p_1])
thread_get_backtrace([$thread], 0)

(] Implementation:

[l distributed server processes with a hierarchical structure

[0 event detection and execution of actions are also
performed in the context of the target processes

©Roland Wismiiller, TU Miinchen 21

R
TLTI 4. Implementation in the OCM (ctd.)

“Multi-user” Interface for Monitoring

] OCM operates as a server

[] Each tool has its private “environment”
[e.q. definition of the target system

[1 Synchronization:

[single actions on a single object are atomic
[atomic multicast communication
[requests can be globally locked

@©Roland Wismiller, TU Minchen 22

R
TLTI 4. Implementation in the OCM (ctd.)

Events and Actions In Other Tools

[1 OCM supports event detection / action execution in the
context of target processes

[1 Avallable events / actions detected at run-time (incl. interfaces)

[] Necessary extension

[include tools into object model of target system

O tool object is derived from process object
[services on processes are now also available on tools

[removes distinction between tools and monitored system

@©Roland Wismiller, TU Minchen 23

R . .
TLTI 4. Implementation in the OCM (ctd.)
Monitoring of Object State Transitions

[1 Can be realized via event services

[] Currently only special cases, e.g. thread_has_been_stopped

Interception and Modification of Object Accesses

[] Not yet available in the OCM

Common Feature

[] Abstract: monitoring activities of the monitoring system
[0 Problems: implementation, appropriateness of interface

[] More specific: detection of object accesses

©Roland Wismiiller, TU Miinchen 24

R
TLTI 4. Implementation in the OCM (ctd.)

Detection of Object Accesses

(] Goal:

[l generic detection mechanism
[0 e.g. “p_1Is stopped”, “TID of p_2 is read”

[] Requirements:

[(unique) identification for object components
0 components must be part of OMIS object model
0 components must not overlap (i.e. no aliasing)

[l protected access mechanism to object components

O ensure that all accesses are detected
0 manipulation of objects only by writing components

©Roland Wismiiller, TU Miinchen 25

R
TLTI 4. Implementation in the OCM (ctd.)

Detection of Object Accesses (ctd.)

(] Problems:

[implicit change of object components in OS calls
[0 dynamic extensibility of OMIS/OCM
[efficient implementation

(] Implementation:

[l object = dynamic array of pointers to static structures
[1 access via C macros that include matching and notification
[matching: compare with specifications in object class
[1 Overhead per access:
[l 6 memory reads, 3 conditional jumps (best case)

@©Roland Wismiller, TU Minchen 26

R
Tl

5. Conclusions and Future Work

[Combination of run-time tools is a promising way of
Implementing advanced tool environments

[Interoperability is impossible without a proper support
environment (monitoring system)

[] This is being more and more recognized
[e.g. DPCL (IBM), DAMS (Univ. Lisbon, Portugal), ...

[] Current work in OCM:

[l direct tool interactions
[l extended object model and detection of object accesses

(] Future work: full implementation of the tool scenario

©Roland Wismiiller, TU Miinchen 27

